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POWER AND TAXES IN A 
MULTI-COMMODITY ECONOMY* 

BY 

R. J. AUMANN AND M. KURZ 

ABSTRACT 

Taxation and redistribution in a democratic majority-rule society are analyzed, 
using the Harsanyi-Shapley non-transferable utility value. The context is that of 
a multi-commodity pure exchange economy. Two approaches are treated: one 
m which taxes are in kind and exchange takes the form of barter; and one in 
which taxes are in money, exchange takes the form of sale and purchase, and 
prices are determined by a process of supply and demand. It is shown that in the 
presence of a non-atomic continuum of agents, the two approaches are 
equivalent, but that this is not so when there are only finitely many agents. It is 
also shown that the value exists under both approaches, and a characterization 
is found in the non-atomic case. 

Most of m o d e r n  economic  theory treats the public sector as a " b e n e v o l e n t "  

social agent  who behaves  so as to maximize some social welfare funct ion.  In a 

different paper  [2] we propose  an a l ternat ive  view in which the public sector with 

its fiscal s t ructure  emerges  as an e n d o g e n o u s  consequence  of the power  s t ructure  

of society. We thus propose  to regard taxat ion and  the redis t r ibut ion  of wealth as 

d e t e r m i n e d  s imul taneous ly  with the process of exchange,  resul t ing in an 

ou tcome  that is in equ i l ib r ium in both  the economic  and political spheres.  

In the earl ier  paper  we cons idered  a relatively simple, one - c ommod i t y  (i.e. 

" m o n e y " )  economy,  where  the ent i re  struggle focused on income redis t r ibut ion.  

Here  we ex tend  the character iza t ion to a genera l  / - commodi ty  exchange 

economy.  The  classical compet i t ive  equ i l ib r ium in this economy is replaced by a 

game theoret ic  equi l ibr ium,  based on the Shapley value,  that takes into account  

not  only the economic  funct ion of exchange  but  also the political funct ions  of 

vot ing and  major i ty  rule. 
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Within this framework, two different approaches will be investigated. In the 

first, called the "Commodity  Redistribution" approach, the entire economic- 

political system is considered as a single game, and the equilibrium we propose is 

simply the non-transferable-utility Shapley value of this one game (see [14]). In 

the second, called the "Income Redistribution" approach, the economic side of 

the model - -  consumption and exchange - -  is assumed to take place in a normal 

competitive environment, whereas the political side - -  the redistribution of 

income - -  is assumed governed by game theoretic considerations; specifically, by 

the Shapley value. 

One of our major results (Theorem B) is that when the space of agents is a 

non-atomic continuum - -  representing the idea of many agents, each individu- 

ally insignificant - -  then these two approaches lead to the same result. We will 

find that this is emphatically not true when the number of agents is finite. Our 

other major results are a characterization of the resulting allocations in the 

non-atomic case, and a general existence theorem that covers both approaches, 

for both non-atomic and finite populations. 

Sections 2, 3, and 4 are devoted to game theoretic preliminaries and 

definitions. In Section 5 we present the basic exchange model. Sections 6 and 7 

describe in detail the two approaches we have just outlined. The major results 

are stated in Section 8 and discussed in Section 9. Sections 10 and 19 are devoted 

to examples, and the remainder of the paper to proofs. 

2. Values of finite coalitional games 

Let T be a finite set; call the members of T players and the subsets of T 

coalitions. A coalitional game on T (or simply game) is a function v that 

associates with each coalition S a real number v(S) (the worth of S), such that 

v(•) = O. A payoff vector on T is a measure on the subsets of T. Intuitively, a 

payoff vector is simply a function that assigns a real number (the payoff) to each 

player; such functions are in an obvious 1-1 correspondence with the measures 

on T. The number of members of T is denoted I TI. 

A null player in a game v is a player i such that v(S 1.3 {i})= v(S) for all 

coalitions S. Players i and j are called substitutes if v(S U{i})= v(S U{]}) 

whenever S contains neither i nor j. For a fixed player set T, a value is a function 

d~ that associates with each game v a payoff vector &v satisfying the following 

conditions: 

(2.1) Additivity: d~(v + w)= ~bv + ~w. 

(2.2) Symmetry: (qbv)({i})= (~bv)({j}) whenever i and j are substitutes. 
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(2.3) Efficiency: (d~v)(T) = v(T).  

(2.4) Null player condition: (~bv)({i}) = 0 whenever i is a null player. 

The definition of value is due to Shapley [13], who also proved the following 

basic characterization of values: 

PaoPosrnon 2.5. For each finite player set T there is one and only one value 

r ; it is given by the formula 

(2.6) (6v)({i}) = E(v(S,  U {i})-  v(S,)), 

where S, is the set of all players preceding i in a random order on T, and E is the 

expectation operator when all I TI! such orders are assigned equal probability. 

For a proof of Proposition 2.5 that is even simpler than the original proof 

(Shapley [13]), see appendix A of [4]. 

Define the dual 1 v" of a finite game v by v ' ( S ) =  v ( T ) - v ( T \ S ) .  By 

reversing orders in Proposition 2.5, it is easy to see that 

(2.7) 4,v" = ~,v. 

3.  V a l u e s  o f  n o n - a t o m i c  g a m e s  

In much of this paper we shall be working with a non-atomic continuum of 

players, and for this reason it is important to examine the extension of the above 

model to the non-atomic case. 

Let (T,~r be a non-atomic measure space; i.e. a set T, together with a 

tr-field ~' of subsets of T, and a non-atomic, non-negative measure/.t  on ~ with 

/.t (T)  = 1. One should not think of the points t of T as individual players; rather, 

one should think of an individual player as an infinitesimal subset dt of T. The 

measure # is the population measure, i.e./~ (S) represents the proportion of the 

total population in S. 

A coalitional game (or simply game) on the measurable space (T, ~ )  is a 

function v from ~ to the real numbers such that v ( ~ ) =  0. There are various 

ways of extending the definition of value from the finite games above to the 

situation we have here; see [4]. Here we will adopt a variant of a definition due 

to Kannai [9]. In this variant a special role is played by the family ~ '  of S in 

with ~ ( S )  rational; these S will be called coalitions. 

' Cf. [101, or [4, p. 140]. 
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Let  v be  a game  and S a coali t ion;  we wish to define (~bv)(S). Intui t ively,  one  

p roceeds  by dividing both  S and T\S into a large but finite n u m b e r  of " sma l l "  

sets W,, all of equal  ix -measure ;  let there  be n in all (see Fig. 1). 

Wl We Wn 
I I I I I I I I I 0 I 

v 

T\S 

Fig. 1. 

If one  considers  each of these small  sets as an individual player ,  then one  gets 

a finite game,  by restricting v to unions of the W,. In this finite g a m e  the coali t ion 

S - -  or  more  precisely the coali t ion of those W, whose union is S - -  has a value,  

which we deno te  &.(S) .  Now if we let n ~ oo and the W, shrink, ~b,(S) may  or 

may not tend to a limit. If it does,  and if this limit is i ndependen t  of the var ious  

choices that  must  be  made ,  then we deno te  the limit (~bv)(S), and call it the 

" ix-va lue  of S." 

Formal ly ,  let H,, H2, �9 �9 �9 be a sequence  of par t i t ions  of T into measu rab le  sets 

(i.e. m e m b e r s  of ~g) of equal  Ix-measure ,  such that S is a union of m e m b e r s  of 

II , ,  and each IIm refines the previous  part i t ion H,, ,. A s s u m e  m o r e o v e r  that  the 

sequence  is separating, i.e. that  if s and t are distinct points  in T, then for  m 

sufficiently large, s and t are in different m e m b e r s  of H,.. For  example ,  if I-1,, is 

the part i t ion of the unit interval  [0,1] into the subintervals  [0,1/2m], 

(1/2", 2/2 m ] , . . . ,  (1 - 1/2", 1], then the sequence  {H,,} is separat ing.  For  each m, 

let v,, be  the finite game  on H,, defined by v , , ( -  ~ )  = v(k.Jw~=_W), and let ~bv,. be  

its value.  Fur ther ,  let S,. = { W E H,, : W C S}; S,. is the coali t ion in the finite 

game  v,. cor responding  to S in the original game  v. Now let m ---, 00; if (cbv,.)(S,.) 
has a limit, and if this limit is i ndependen t  of the choice of the sequence  

( I I , l - I 2 - . . )  (when chosen in accordance  with the above  condit ions) ,  then the 

limit is deno ted  (4~v)(S). If this is the case for  all coali t ions S, then the function 

~bv is called the ix-value of v. 

The  game  model  of this section differs f rom the s tandard  mode l  of non-a tomic  

games  [4] in that  in addit ion to T, qr and v, we are here  given an under lying 

measure  ix. The  ix-value is a var iant  of the asympto t ic  value [4, pp. 126-127]; it is 

ob ta ined  f rom the lat ter  by considering only par t i t ions  of T into sets of equal  

ix-measure .  Obvious ly  if v has an asympto t ic  value,  then it also has a / z - v a l u e ,  

and it equals  the asympto t ic  value;  but  the converse  is false. 2 

2 Example 19.2 of [4] has a A-value but no asymptotic value. 
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In the applications below we deal with voting games in which we stress the 

democratic "one  man- -one  vote"  principle. In this context it is natural to use 

finite approximations in which the elements of the partitions are assigned equal 

amounts of the population measure, and this leads directly to the Ix-value 

defined above. 

As in the case of finite games, we define the dual v" of a game v by 

v~(S) = v ( T ) -  v(T\S).  Then by using a limiting argument and (2.7), one can 

easily show that v # has a /x-value if and only if v does, and in that case 

(3.1) 4,v" = 4,,~. 

The Ix-value satisfies conditions analogous to the axioms (2.1)-(2.4) defining 

the finite value. For future reference we quote here only the efficiency axiom 

(3.2) (4,v) (T)  = v ( r ) ,  

which follows easily from the efficiency axiom (2.3) for finite games. 

It is sometimes convenient to treat finite and non-atomic games in the same 

context, and in particular to refer to the "ix-value" of a game that may either be 

non-atomic or finite. In that case, the # -value of a finite game will be taken to be 

simply the value. 

4. Threats 

A strategic game F consists of 

i) A measure space (T, c~,ix) (T  is the player space, and /x the population 
measure; S in ~ with Ix(S) rational are coalitions). 

ii) For each coalition S, a set X s (the strategies of S). 

iii) For each coalition S, each strategy or of S, each strategy r of T\S, and each 

in T, a number hS(t) (the payoff to t), such that hST(t)= hT,~s(t). 
When T is finite, this is something very similar to the traditional definition of 

'games in normal form" [17]. However,  it is not entirely the same; the point is 

that here strategies are assigned to coalitions, and not just to individual players. 

Though formally it is easy to derive coalitional strategies from individual 

strategies and vice versa, there may be certain strategies that are more naturally 

described in terms of coalitions than individuals, e.g. those involved in the 

imposition of taxes. Moreover,  in the non-atomic case, coalitional strategies 

enable us to bypass the technical complexities that would arise from the need to 

define payoffs to "infinity-tuples" of individual strategies. For these two reasons 

we prefer the definition as given. 
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Strategic games will be assumed to satisfy the following four conditions, which 

are not substantive but merely a matter of convenience: 

(4.1) hS(t)>=O. 

(4.2) p , ( T ) :  1. 

(4.3) h s is measurable in t for all S, ~, and r. 

(4.4) The empty coalition 0 has exactly one strategy. 

In view of (4.4), we shall write h ~ instead of h ~. The meaning of (4.4) is that O 

has no real choice of strategies and cannot affect the payoff. 

All strategic games treated here will either have finite T, or non-atomic V,. If T 

is finite, we assume that ~ consists of all subsets of T, and ~ ({t}) = 1/[ T I for all t 

in T. 

Before we go further let us agree on some notational conventions. The family 

of coalitions (i.e. S in ~ with p,(S) rational) is denoted ~ ' .  If f is a (vector or 

scalar) function on T, we shall write f s f  for f s f ( t ) t z (d t ) ,  and f f  for f r f .  The set 

of non-negative real numbers will be denoted R +. W.r.t. means "with respecl 

to";  w.l.o.g, means "without loss of generality"; integrable means "/z- 

integrable." 
For S E ~ '  and (o', r) E X s • X T\s, write 

(4.5) HS( ,,r)=fs h -fr,s h s.  

We may view H s as a 2-person 0-sum game, the players being the coalitions S 

and T\S.  If this game has a saddle point (o'0, Zo) - -  i.e., if 3 

(4.6) HS(cr, to)<= HS(cro, r0)_ <- HS (o'o, r) 

for all o- in X s and r in X r\s - -  then we shall denote the minmax value 

HS(o% to) of this game by w(S).  Note that 

w ( T ) =  max { f  h r~: crE Xr} .  (4.7) 

Finally, write 

(4.8) 1 w(S) v ( S ) = ~ w ( T ) + ~  

3 Implicit in formula (4.6) is the assumption that the three expressions appearing therein are 
defined as extended real numbers ,  i.e., that none of them is of the  form oo-oo. 
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for all S in c~,. We call v the Harsanyi coalitionalform of the strategic game F, 

and say that it is defined whenever all the games H s have saddle points. 

Intuitively, the games H s, w and v are meaningful only when utility is 

"transferable."  In that case one can meaningfully speak of fshS~ as the total 

payoff to S, since S can divide that sum in an arbitrary way among its members. 

If a coalition S acts in concert in such a situation, what total payoff can it 

expect? The answer given by von Neumann and Morgenstern [17] is 

(4.9) min max fs hs"  
r E X  T \ s  ~ E X  s 

This has been criticized as " too pessimistic" because it assumes the worst 

possible, as if the only object of the complementary coalition T\S is to minimize 

the payoff to S. A more sophisticated answer, based on a subtle interplay of 

threats, counterthreats,  and compromises, was suggested by Harsanyi [6], who 

followed up the pioneering work of Nash [12] on the subject. Suppose the 

members of S have decided to act in concert, as have the members of T\S. 
Presumably S and T\S will eventually wish to cooperate  so that they will jointly 

receive the maximum payoff w(T) (see (4.7)); the only question is how this 

amount is to be divided between them. Before deciding on this, each side will 

wish to put itself in as good a bargaining position as possible vis-~t-vis its 

opponent.  To this end, each side makes a threat - -  i.e., announces a strategy to 

be carried out in case of disagreement. If the threats are cr and r, the payoffs in 

case of disagreement will be fs h s to S, and fr\s h s to T\S. Thus the total payoff 

is fh s, which is in general less than the maximum amount w(T) that T can 

achieve. It therefore seems reasonable for the sides to compromise by splitting 

the difference between w(T) and fh s, and adding this amount to the disagree- 

ment payoff of each side. The final payoff to S will then be (w(T)+ HS(tr, r))/2, 

and to T\S, it will be (w(T) -  HS(~, 7))/2. Thus if in choosing their threats, the 

sides take into account their effect on the final outcome of bargaining, then S 

will try to maximize, and T\S to minimize, the quantity HS(tr, r).  Hence the 

final amount that S can expect to obtain is precisely v(S). 
Suppose now that v is defined and has a /z -va lue  ~bv. Then ~bv is called the 

Harsanyi-Shapley transferable utility (TU) value, or simply TU value, of the 

strategic game F. 

Next, let us refer to a positive real-valued measurable function on (T, cs by 

the term "comparison function." If )t is a comparison function, denote by  ~F  

the strategic game obtained from F by multiplying the payoffs h s ( t )  by ~t (t), and 
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by vA the Harsanyi coalitional form of AF. If va is defined and has a g -value 6va, 

and if there is a o- in X T such that 

(4.10) :s Ah~r= (c~v~)(S) 

for all S in ~ ' ,  then h5 is called a Harsanyi-Shapley non-transferable utility 
(NTU) value, or simply a value, of the strategic game F. 

The reasoning behind this definition of value may be briefly described as 

follows: if side payments were permitted with the "exchange rates" A, then the 

value for the resulting coalitional game would dictate paying each player dt an 

amount (chvA)(dt), where vA is the Harsanyi coalitional form of All. Formula 

(4.10) may be rewritten 

(4.l l)  ~t(t)h r(t)tz(dt) = (6vA )(dt); 

that means that at the exchange rates A, the value OvA is achievable without any 

"transfers of utility." This may therefore be taken as a value even in the absence 

of transferability, since no transfers are called for. 

A more thorough discussion may be found in Shapley 4 [14], and in [I, section 

6]. It is worthwhile to note that for I TI = 2, the Harsanyi-Shapley NTU value 

coincides with the bargaining solution of Nash [12] for two-person cooperative 

games. 

The value notion differs in a fundamental way from solution notions such as 

the core, the von Neumann-Morgenstern solution, and the bargaining set, which 

are based on the concept of domination. Recall that an outcome x dominates an 

outcome y if there is a coalition S that prefers x to y and can achieve for itself an 
outcome at least as good as x. Thus domination expresses dissatisfaction on the 

part of a coalition because it can do better by itself. But the value, though it is 

based partly on this kind of consideration, also takes into account the oppor- 

tunities of a coalition to cause harm to players outside it - -  i.e. to threaten. Thus 

the core, von Neumann-Morgenstern solution and bargaining set take into 

account arguments of the form "I  should get more because I do not need you to 

do better";  whereas the value takes into account not only this kind of argument, 

but also the kind that says "I  should get more because you need me to get what 

you're getting." 

4 Shapley permits some (but not all) of the exchange rates A (t) to vanish. Vanishing exchange 
rates are awkward to interpret; it seems best to avoid them when possible. A value in our sense (with 
non-vanishing A(t)) is of course also a value in Shapley's sense. 
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5. The market model 

A m a r k e :  M consists  of 

i) A m e a s u r a b l e  space  (T, ~ )  

o--addi t ive,  non -nega t ive  measu re  

measure 7). 

(the space  of agents 6) t o g e t h e r  with a 

/z on ~ with / z ( T ) =  1 ( the population 

ii) The  non -nega t ive  o r t han t  l-I - -  ca l led  the  consumption set - -  of a 

Euc l i dean  space  E ~ (l  r ep r e sen t s  the  n u m b e r  of d i f ferent  c o m m o d i t i e s  in the  

marke t ) .  

iii) A n  in t eg rab le  funct ion e f rom T to f~ (the endowment  function or  initial 

allocation). 

iv) F o r  each t in T, a funct ion  u, on i l  ( the utility function of t).  

A m a r k e t  is ca l led  finite if T is finite,  and  non-atomic  if ~ is non -a tomic .  In this 

p a p e r  we will a s sume that  every  m a r k e t  is e i the r  finite or  n o n - a t o m i c :  

W e  will a s sume that  the  m e a s u r a b l e  space  (T, ~ )  is f inite or  i somorph i c  9 to the  

unit  in terva l  [0, 1] with the  Bore l  sets. This  a s sumpt ion  is less res t r ic t ive  than  it 

sounds ;  any n o n - d e n u m e r a b l e  Bore l  subset  of any Euc l i dean  space  (or  indeed ,  

of any c o m p l e t e  s e p a r a b l e  met r ic  space)  is i somorph ic  to [0, 1]. 

I f x a n d y  are  i n E  ~ , w e w r i t e x _ - > y i f x ' > = y ' f o r a l l i , x > y i f x ' > y ' f o r a l l i ,  

and  x -> y if x -> y and x ~ y. T h e  or igin of E~, as well  as the  n u m b e r  zero ,  a re  

d e n o t e d  0. A funct ion  u on f l  is increasing if x -> y impl ies  u ( x ) >  u ( y ) .  The  

par t i a l  de r iva t ive  Ou/Ox' of a funct ion  u on f l  is d e n o t e d  u ' ,  and  the  g rad ien t  

(u 1, . .  ", u t) is d e n o t e d  u '. The  fo l lowing a s sumpt ions  will be  m a d e  t h roughou t :  

(5.1) For each t, u, is increasing, concave, and continuous on fl.  

(5.2) u,(0)-- 0. 

(5.3) u , (x)  is simultaneously measurable 1~ in t and x. 

(5.4) f e > 0 .  

5 The terminology differs somewhat from that of [1]. There a "market" is defined by preference 
relations rather than utdity functions. 

"Agents" are the same as "players"; we prefer the former in the current politico-economic 
context, the latter in purely game theoretic contexts. 

7 In [1], /x was not interpreted as a population measure. 
This excludes the case in which/~ has a denumerable infinity of atoms, as well as the "mixed" 

case, m which tz has some atoms as well as a non-atomic part. 
Two measurable spaces are ~somorphzc if there is a one-one transformation from one onto the 

other that preserves measurability m both directions. 
~~ I.e, measurable in the product field ~ • ~, where ~ is the Borel field on fl. 
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(5.5) For each t and i, the partial derivative u',(x ) exists and is continuous at 

each x in l-I with x' > O. 

A market  is called bounded if 

(5.6) 

and 

(5.7) 

u, is uniformly bounded," 

u,(1, " ", 1) is uniformly positive) 2 

We close this section by describing some notation and terminology that will be 

used throughout.  For S in c~, we will sometimes write e(S)  for fse.  An 

S-allocation is a measurable  function x from S to f~ with fsX = e(S).  An 

allocation is a T-allocation. If x is a function from T to 1) then we will 

sometimes write u(x)  for the function on T whose value at t is u,(x(t)). A price 

vector is a member  p of f~ with p > 0; it is called normalized if E',=,p' = 1. If p is 

a price vector and x E E ' ,  then El=,p 'x '  is denoted px. The expressions "almost  

everywhere"  (a.e.), "a lmost  all" (a.a.), and so on will refer to the measure/z .  If 3t 

is a comparison function, denote  by / tM the market  obtained from M by 

multiplying each utility function u, by A(t). 

6. Commodity redistribution 

We wish to define a game that embodies the redistribution process. First we 

describe the game verbally. Taxation '3 decisions are reached by majority vote. 

This means that any coalition S with/~ (S) > 1/2 can impose taxes in any way it 

pleases. In particular, it may divide among its own members  the taxes collected 

from the minority. The taxes discussed in this section are imposed on com- 

modities and paid in commodities.  

It might be argued that in a democracy,  the tax laws must be uniform, so that 

two people cannot be taxed differently just because one is a member  of a ruling 

coalition while the other  is not. But it must be recalled that what we are 

discussing here is not merely taxation but rather  net income redistribution due to 

government  activity. Though taxation is required to be uniform, there is no such 

requirement  on government  spending, nor would such a requirement  be feasible. 

The net effect of this is that the majority can tax the minority as heavily as it 

wishes, and distribute the proceeds among its own members .  

,1 Sup{u,(x): t ~ T, x E f~} < ~. 
,2 Inf{u,(1,...,1): t E T}>0. 
'3Actually, we are studying the net effect of both taxation and redistribution. 
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This being the case, it would seem at first sight that the entire income e ( T )  of 

society becomes available to whoever is in the majority, since the majority can, 

in principle, tax the minority at 100% and return nothing to it. If one calculates 

the resulting value, one gets an allocation in which no account is taken of the fact 

that different individuals may have different endowments. Though the calcula- 

tion is not without interest, the result appears too extreme to be considered 

relevant to the problem of the distribution of wealth in a democracy. 

We now appear to be caught in a dilemma. If the majority rules, one gets an 

entirely egalitarian outcome. If, on the other hand, one ignores the political 

structure and does not allow the majority to redistribute, one is simply left with 

the initial allocation. Neither case seems realistic. How, then, can one account 

for the type of taxation scheme that one observes? 

The answer lies in what we said at the end of Section 4. The power o[ the 

minority lies in its threat possibilities. We are going to assume that there is no 

"forced labor" - -  i.e. that the minority can, if it wishes, destroy part or all of its 

endowment.  This is a powerful threat, which can force the majority to 

compromise. 

The formal treatment starts out with a market M. Given M, define a strategic 

game F = F(M), called the redistribution game, as follows: T, ~, and ~ are as in 

the market M. As for the strategy spaces and payoff functions, we will not 

describe these fully, because that would lead to irrelevant complications; but we 

will make three assumptions about them, which suffice to characterize com- 

pletely the games vA and their values. 

The first of the three assumptions is: 

�9 (6.1) I[/z (S) > 1/2, then [or each S-allocation x there is a strategy t ro[S  such 

that for each strategy T o[ T\S,  

>-_ u,(x(t)) ,  t ~ s 
h S( t )  =0,  "t Z S. 

This means that a coalition in the majority can force every member  outside of it 

down to the zero level, while reallocating to itself its initial bundle in any way it 

pleases. 

Next, we assume 

(6.2) I f  I~ (S)  >= 1/2, then there is a strategy -c of T \S  such that for each strategy 

o" o[ S, there is an S-allocation x such that 

hS ( t )  <= u,(x(t)),  t ~ S. 
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This means that a coalition in the minority can prevent the majority from making 

use of any endowment other than its own (the majority's). Finally, we assume 

(6.3) If/.t (S) = 1/2, then for each S-allocation x there is a strategy o" of S such 

that for each strategy r of T \S  there is a T\S-allocation y such that 

>= u,(x(t)), t E S 
hS( t )  <= u,(y(t)), t @ T\S. 

This simply means that if neither S nor its complement are in the majority, then 

each side can divide its endowment in any way it pleases, while at the same time 

not giving anything to the other side. 

This completes the definition of the redistribution game. Values for all 

strategic games have been defined in Section 4, and the definition applies in 

particular to this game. More interesting than the values themselves, though, are; 

the allocations x such that u(x)  is a value of F(M). These are the commodity 

redistributions to which we are most directly led by value considerations; we call 

them commodity tax allocations for M. 

7. Income redistribution 

In the Redistribution Game of Section 6, it was assumed that in taxing an 

individual, Society could take specific cognizance of the vector of his endow- 

ments. It is possible to t~ke a different approach, in which Society would only be 

allowed to tax income - -  i.e. the monetary worth of the endowment  vector at 

prevailing prices. That is what we will do in this section. 

Given a price vector p, define the indirect utility function u p, of trader dt to be; 

the function from R* to itself given by 

(7.1) u " , ( y ) = m a x { u , ( x ) : x E f ~  and px<=y}. 

Intuitively, u,P(y) is the highest' utility dt can attain by buying goods at prices p 

with a maximum expenditure of y. 

If all traders are assured that they can always trade at the fixed prices p, then 

the given /-good economy becomes an economy with only one good, namely 

money. In this economy the initial endowments are pe(t), and the utility 

functions are uP,; this may be analyzed as a redistribution game with only one 

commodity, and this analysis yields a certain taxation-redistribution system. 

Taxation and redistribution in this one-good "money"  economy, as well as the 

ordinary incentives for trading, will in general create a situation in which at 

prices p, the supply and demand in the original /-good economy are out of 
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balance. One therefore would like to know whether there exists a price vector p 

such that if the above procedure is carried out, supply and demand for each of 

the l goods will match after the taxation and redistribution are carried out, 

where the same price vector p is used both in assessing the endowment  for 

purpo~e~ of taxation and in trading after laxe~ have bccn collected. Such a p, 

together with the resulting tax scheme, is called a "competi t ive tax equilibrium." 

Formally, given a market  M and a price vector p, define a market  M p, called 

the market derived from M at prices p (or simply the derived market) as follows: 

(T, ~, tx ) is as in M;  the number  of commodit ies  is 1 ; the initial allocation is pe ; 

and the utility functions are the indirect utilities u p defined in (7.1). We will see 

below (Lemma 16.1) that M e does indeed satisfy all the conditions required of 

markets  as defined in Section 5 ((5.1) through (5.5)). A competitive tax equilib- 

rium in M is a pair consisting of an allocation x and a price vector p such that 

(7.2) x( t )  a.e. maximizes u, over {x E f~: px <-px(t)}, 

and 

(7.3) px is a commodity tax allocation in M p. 

If (x ,p)  is a competi t ive tax equilibrium, then x will be called an income tax 

allocation. Note that in M p there is just one "commodi ty , "  namely money, and 

that the quantities px(t)  appearing in (7.3) are in units of that "commodi ty . "  

Note also that in any market  in which l = 1 - -  i.e. in which there is just one 

commodity  - -  the commodi ty  and income tax allocations are the same. Hence  

when l = 1, we will sometimes refer simply to tax allocations. 

8. Statement of major results 

Three basic results are proved in this paper. Theorem A is a general existence 

theorem that covers both finite and non-atomic markets,  and both commodity 

and income tax allocations. Theorem B is an equivalence theorem, which asserts 

that in non-atomic markets,  the commodi ty  and income redistribution ap- 

proaches lead to the same result; this result does not hold for finite markets.  

Theorem C provides a characterization of tax allocations in one-commodi ty  

non-atomic markets,  and asserts that in such markets,  there is a unique tax 

allocation. Theorems B and C together yield a characterization of commodi ty  

tax allocations in many-commodi ty  non-atomic markets:  By Theorem B, every 

such allocation is associated with a tax allocation in a derived market  MP; and 

these, in turn, are characterized by Theorem C (see Proposition 9.14). 
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A market is called trivial if there are just two agents ([ T I = 2) and one of them 

has an endowment vector equal 14 to 0. 

THEOREM A (Existence). Every non-trivial bounded t5 market has a commodity 

tax allocation and an income tax allocation. 

THEOREM B (Equivalence). In a non-atomic bounded market, the commodity 

tax allocations coincide with the income tax allocations. 

THEOREM C (Characterization). A non-atomic bounded market with a single 

commodity (l = 1) has a unique tax allocation x. This allocation is characterized ~6 

by a.e. x ( t ) > 0  and 

(8.1) x ( t )+  u,(x(t)) = e( t )+ f 
u(x) 

u ; ( x ( t ) )  u ' (x )  " 

Theorem A is proved in Section 18, Theorem B in Section 16, and Theorem C 

in Section 15. A counter-example to Theorem B when T is finite is given in 

Section 19. 

9. Interpretation, discussion, further results 

We start out by recalling some basic facts about "efficient" allocations. An 

allocation x in a market M is called efficient if there is no allocation y such that 

a.e. u, (y( t ) )>u, (x( t ) ) .  With each efficient allocation there is associated an 

essentially ~7 unique pair (A, p), consisting of a measurable function A from (T, c~ ) 

to R +, and a price vector p, such that 

(9.1) the maximum of A(t)u,(x ) -  px over f~ is a.e. achieved when x = x(t) .  

This (A,p) is called an efficiency pair for x;  we will call it normalized if p is 

normalized. From (9.1) it follows that p is an efficiency price vector, i.e. that 

(9.2) the maximum of u,(x) over {x E f~: px <= px(t)} is a.e. achieved when 

x = x ( t ) ,  

and that 

J4 When  I T t > 2, a vanishing endowment  does not make  an agent powerless, because he still has  
his vote. But when I T I = 2, the vote plays no role because neither player alone has a majority, and so 
lacks the  power to tax the other  agent. 

,2 I.e. obeying (5.6) and (5.7). 
,6 I.e., an allocation x is a tax allocation if and only if a.e. x ( t ) > 0  and (8.1). 
~7 Unique  up to multiplication by a positive constant.  
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(9.3) the m a x i m u m  of f A u  (y)  over all allocations y is achieved when y = x. 

Converse ly ,  any one of the th ree  s t a t emen t s  (9.1), (9.2), or  (9.3) implies that  x is 

efficient; moreove r ,  given an efficient x, the p satisfying (9.2) is essential ly 

unique,  as is the A satisfying (%3). F rom (9.I)  it also follows that  a.e. 

(9.4) 

and 

(9.5) 

A(t)u ' l (x( t ) )<=p ' for all i, 

A( t )u ' , ( x ( t ) )  = p'  when x ' ( t ) > 0 .  

Note ,  incidentally,  that  (9.2) and (7.2) are the same.  

F r o m  (9.5) it follows that  a.e. 

x ( t ) # O  ~ a ( t ) > 0 .  

In par t icular ,  if x ( t )  # 0 a.e., then A is a compar i son  funct ion (i.e. A( t )  > 0 a.e.). 

The  converse ,  however ,  is false: if A is a compar i son  function,  x may  still vanish 

at a set of posi t ive measure .  

T h e  exis tence  of  an efficiency price vec tor  p is well knowntS; its essent ial  

un iqueness  follows f rom the differentiabil i ty of the u,. O n e  can then use (9.5) to 

define a,  and deduce  (9.1) (cf. the p roof  of l e m m a  14.1 of  [1]). O u r  o the r  

asser t ions follow wi thout  difficulty f rom these considerat ions .  

G iven  an efficient a l locat ion x, the efficiency compar i son  funct ion A can be 

thought  of as providing "coeff icients  of i m p o r t a n c e "  for  the players~9: the  

redis t r ibut ion x would  result  if one  would want  to maximize  total  utility when  

the individual  utilities u, are weighted  by A(t) .  

In case l = 1, we may  w.l.o.g, t ake  p = 1. If x is a tax al locat ion,  then by 

T h e o r e m  C, x ( t ) > 0  a.e., so by (9.5), A ( t ) =  1/u;(x( t)) .  Thus  (8.1) b e c o m e s  

(9.6) A (t)u, (x (t)) - f Xu (x)  = e (t)  - x (t). 

T h e  right side of (9.6) represen ts  the  net 2~ taxes of dt. T h e  left side is the excess of  

dt 's  final (i.e. a f ter - tax)  utility over  the  ave rage  final utility of  all agents ,  when  

the utilities are c o m p a r e d  using A. Thus  (9.6) says that  one ' s  taxes are 

18 See e.g. Hildenbrand [7]. 
19 Or rather for the players' utilities. If A(t)=2A(s), a unit of dt's utility is considered 

equivalent to two of ds 's. Of course any rescaling of the u,'s involves a corresponding rescaling of the 
x(t)'s. 

2o I.e., the net decrement in dt's worth after both taxation and redistribution are taken into 
account. In fact, both sides of (9.6) are densities; to get actual amounts of tax, one should multiply by 
t~ (dt). 
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proportional to how much one is better  off than the average person, when 

utilities are weighted by one's " importance."  

An alternative interpretation of (8.1) can be given in terms of marginal 

utilities. Since u ;(x(t)) is the marginal utility of income, its inverse 1/u ;(x(t)) is 

the money worth of a unit of utility. Hence u,(x(t))/u;(x(t))  is the monetary 

worth of dt's final utility when evaluated at the marginal rate. Thus (8.1) says 

that dt's taxes are equal, in dollars, to the amount by which the monetary worth 

of his utility exceeds the average monetary worth of everybody's utility. 

Yet another interpretation of (8.1), in terms of the "fear  of ruin," was 

discussed in [2]; we will not repeat this discussion here. 

We note that 

(9.7) if x is an allocation satisfying (8.1) a.e., then x ( t ) > 0  a.e.; 

this follows from the fact that f x  = re, hence x cannot a.e. vanish, and hence 

f u ( x ) / u ' ( x ) > O .  Thus (8.1) alone is sufficient for an allocation x to be a tax 

allocation. Note also that if c is any constant such that for some allocation x, we 

have 

(9.8) u,(x(t))/u ;(x(t)) = e(t)  - x( t )  + c 

a.e., then x must be a tax allocation, since (9.8) implies c = f u ( x ) / u ' ( x ) .  

Next, we show how Theorems B and C can be combined to yield a 

characterization of commodity tax allocations when there are many commodities 

(l => 1). We require two lemmas. 

LEMMA 9.9. If a market M is bounded, so are all its derived markets M p. 

This will be proved below (Lemma 16.1). 

LEMMA 9.10. Let x be an efficient allocation in a market M, with efficiency pair 

(A, p). Then 

(9.11) px is an efficient allocation in M p, with efficiency pair (A, 1); 

(9.12) u ( x ) =  uP(px); and 

(9.13) A(t) = 1/(uP)'(px(t)) whenever x ( t ) / O .  

PROOF. (9.12) follows from (9.2) and (7.1). To prove (9.11), let y E R +, and let 

the maximum in the definition of uP(y) be achieved at x. Then y =px and 

uP(y) = u(x);  since (A, p) is an efficiency pair for x, we deduce, using (9.12), thai 
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/ t  ( t ) u ~ ,  ( y )  - y = ~ t ( t ) u , ( x )  - px  <= A ( t ) u , ( x ( t ) )  - p x ( t )  

= ~ ( t ) u " , ( p x ( t ) ) -  p x ( t ) .  

But this means precisely that ()t, 1) is an efficiency pair for px. (9.13) follows 

immediately from (9.11) and (9.5) applied to M p. 

The characterization of commodity tax allocations for l => 1 is as follows: 

PROPOSl'rIoN 9.I4. In a non-atomic bounded market M, an allocation x is a 

commodity tax allocation if and only if it is efficient and a.e. 

(9.15) ) t ( t )u , (x ( t ) ) -  f ~tu(x) = p ( e ( t ) -  x(t)), 

where ()t,p) is an efficiency pair for x. 

Note that (9.15) is subject to exactly the same interpretations as (9.6), except 

that the taxes are expressed in "dollar" (rather than commodity) terms, the 

prices being simply the efficiency prices for x. 

To derive Proposition 9.14 from Theorems B and C, first let x be a commodity 

tax allocation. Then x is el~icient. By Theorem B, x is an income tax allocation, 

so there is a normalized p satisfying (7.2) and (7.3). By (7.3) and Theorem C, 

px( t )>O a.e., and hence x ( t ) ~ O  a.e. By (7.2), p is the normalized efficiency 

price vector for x, so there is a comparison function Jt such that (A,p) is the 

normalized efficiency pair for x. By (7.3), Lemma 9.9, and Theorem C, we have 

a.e .  

(9.16) uP'(px(t)) + px(t)  = pe(t) f u__~_(p_~ 
uP,'(px(t)) + J u p'(px)" 

Together, (9.12), (9.13) and (9.16) yield (9.15). 
Conversely, let x be an efficient allocation, with normalized efficiency pair 

(/ t ,p) satisfying (9.15). Since f x  = fe ,  x cannot vanish a.e., hence f~ tu(x)>O,  
hence by (9.15) a.e. x ( t ) ~  O, and hence a.e. px( t )>O.  From (9.12), (9.13) and 

(9.15) we then deduce (9.16), and so from Lemma 9.9 and Theorem C it follows 

that (7.3) holds. (7.2) follows from the fact that p is an efficiency price vector. 

Hence x is an income tax allocation, and so by Theorem B a commodity tax 

allocation. This completes the derivation of Proposition 9.14 from Theorems B 

and C. 
In presenting our results, we stated Theorems B and C first and derived 

Proposition 9.14 from them. Our strategy of proof will be the reverse. First we 

will prove Proposition 9.14 (characterization in the many commodity case), in 
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Sections 11 through 14. This is the longest and deepest part of the paper; a 

reader seeking an intuitive overview of this part is referred to [2], Section 9, 

Steps 1 through 5. 2~ From this we derive Theorem C (existence, uniqueness, and 

characterization in the non-atomic case) in Section 15, and Theorem B (equival- 

ence in the non-atomic case) in Section 16. Theorem B and the second part of 

Theorem C - -  i.e. the characterization (8.1) - -  are derived rather easily from 

Proposition 9.14, in much the same way that we just did the reverse derivation. 

The first part of Theorem C (existence and uniqueness in the non-atomic 

one-commodity case), however, requires a separate, though not particularly 

difficult argument. Theorem A (existence in the many-commodity case) is then 

proved in two parts. The non-atomic case is done in Section 17: One finds an 

income tax allocation by applying Theorem C to calculate demand in the derived 

markets M p, allowing p to vary, and using Debreu 's  lemma [5, p. 82]; by 

Theorem B, the income tax allocation thus found is also a commodity tax 

allocation. In the finite-player case there is no equivalence; we apply in two 

different ways a basic lemma of Shapley [14] about the existence of NTU values, 

to find both kinds of tax allocations (Section 18). 

Additional discussion of these results, and especially of Theorem C, will be 

found in [2]. 

I0. Examples 

Several one-dimensional examples were discussed in [2]. In this section we 

wish to examine a class of multidimensional examples. We will confine ourselves 

to the non-atomic case. 

We start with a lemma that will simplify the calculations. 

LEMMA i0.1. Let  x be a commodi ty  (or equivalently, income) tax allocation, 

with efficiency pair (A,p). Set c = f Au(x ) .  A s s u m e  x ( t ) > 0  a.e., and set 22 

e ' ( t )  = u',(x ( t ) )x ' ( t ) /u ,  (x (t)), 

I 

e ( t )  = ~ e ' ( t ) .  
t = l  

Then a.e. 

(10.2) p ' x ' ( t ) / e ' ( t )  = c + p ( e ( t ) -  x ( t ) )  

21 [2] treats only 1 = 1; but the intoitive considerations for general 1 are in many respects similar, 
though somewhat more complex. 

22 e'(t) is the elasticity of t's utility w.r.t, x' at x'(t). 
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and a.e. 

e ( t )  tc + pe(t)) .  (10.3) px ( t )  = 1 + e ( t ) '  

I f  e is a constant - -  say e ( t )  = e - -  then 

(10.4) c = f p e / e .  

PROOF. (10.2) follows from (9.15) and (9.5). Multiplying both sides of (10.2) 

by e ' ( t ) ,  summing over i, and dividing by 1 + e (t), we obtain (10.3). To obtain 

(10.4), we integrate (10.3) and remember  that f x  = f e .  This completes the proof 

of the lemma. 

Let u be a utility function that is homogeneous of degree a, where 0 < o~ =< 1. 

For our first example, we would like to choose u, = u for all t. Because u is 

homogeneous,  the induced preferences are homothetic;  hence all efficient 

allocations consist of bundles lying on the ray from the origin through the 

aggregate initial endowment  re,  and we may write 

(10.5) p = u ' ( f e ) .  

Let x be a commodity tax allocation; then x is efficient, and hence x ( t )  is a scalar 

multiple of f e  for each t. From this and the homogeneity we obtain e ' ( t ) =  

u ' ( f e ) f e ' / u ( f e ) .  By Euler 's formula, it follows that 

I I 

t;(t) = ~ • ' ( t )=  ~ ( f e ' ) u ' ( f e ) / u ( f e ) =  o~. 
i = |  i = 1  

From (10.3) and (10.4) we obtain 

if (10.6) p x ( t ) =  l----~ a pe + l----s 

i.e. the net income of each agent is a mix of his gross income and the average 

gross income of all agents, in the ratio ~ : t .  For the tax we get 

(10.7) 
1 

p e ( t ) -  px ( t )  = ]--~a (pe(t  ) - fpe) ,  

and this means that we have a linear tax with a rate of at least 50% (since a _-< 1). 

The bundle x ( t )  itself (as distinguished from its worth px( t ) )  may be calculated 

by recalling that it must be a scalar multiple of f e ;  hence by (10.6), 
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(10.8) x ( t ) = p x ( t ) .  ( 1 a pe(t)] f e  ' 
p f e  J e =  ~ + l + a  fpe  / 

where p = u'(fe). 
There is, however, a difficulty; we cannot take u, = u, because homogeneous 

utility functions are not bounded. To get around this, assume e is bounded, say 

e(t) <- b E f l  for all t. Define u, by u,(x) = [(u(x))  for all x, where f is bounded 

and [ (y)  = y for y _- u((pb/ fpe) fe ) ,  where p = u'(fe) .  Though the u, are no 

longer homogeneous, all agents still have the same homothetic preferences; 

hence all efficient allocations are on the ray through f e  and the efficiency prices 

are p = u'(fe) .  Since by Theorem C the derived market M p has only one tax 

allocation, it follows that there is exactly one income (and hence commodity) tax 

allocation in M. But by (10.8), x(t)<_- (pb/ fpe) fe ,  hence u, and its derivatives are 

the same as u and its derivatives at x(t),  and so from Proposition 9.14 it follows 

that the x of (10.8) is the unique commodity tax allocation in the given market. 

For a more specific example, we may let a , , . -  -, a~ be/-dimensional  vectors, 

and define 

(10.9) u(x)  = (a,x)~,(a2x)~ . . (akx)~, 

where aj > 0  and Z~=laj _-< 1. If k = l and aj is the j-th unit vector, this is a 

Cobb-Douglas utility; such utilities are however excluded, since they are not 

monotonic on the boundary of fl. If a~ > 0 (i.e. all components are positive) for 

all j, monotonicity is restored. In this case the degree a of homogeneity is simply 

Another example is given by 

k 

(10.10) u ( x ) =  ~'~ (a,x)"; 
I = 1  

here it is only required that Z~=t a, > 0 and aj _-> 0 for all j. 

To some extent the above method may be used even when the u, are different, 

as long as they are homogeneous, all with the same degree of homogeneity a, in 

the "relevant" part of fl  (i.e. up to an appropriately chosen bound). This would 

be the case, for example, if the right side of (10.9) were replaced by 

(a~( t )x ) '~  (ak (t)x) ~'), subject to the restriction E,k=l aj (t) = a ;  or if the right 

hand side of (10.10) were replaced by Z~_~(aj(t)x)L In this kind of situation the 

elasticities e ' ( t )  may be different for different t, but their sum e (t) will always 

equal a. From (10.3) and (10.4) we can then deduce (10.6) and (10.7), i.e. we can 

calculate the net income and the tax in terms of gross income, average gross 
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income, and the degree a of homogeneity. But calculating the prices p and the 

actual allocation x is quite another  matter, since we can no longer say that x(t) 
must be on the ray through re. We will not go further into this matter  here. 

As before, we must modify the utilities to make them bounded;  the appro- 

priate way to do this is in this case a little complex, and it may be necessary to 

assume that the normalized gradient u ;(x)/El=l u',(x) is bounded away from 0 (as 

will be the case for utility functions of type (10.9), but not for those of type 

(10.10) if the aj are permitted to have vanishing components). Unlike before, we 

have no way of knowing what prices in the modified economy will look like. 

Therefore,  though we can be sure that there is a commodity tax allocation 

satisfying (10.6) and (10.7), we cannot be sure that there are no others. 

II. The optimal threat 

Let M be a market, F = F(M) the corresponding Redistribution Game,  H s, v, 
and w as in Section 4; in particular, v is the Harsanyi coalitional form of F. In 

this section we shall show that the minority's optimal threat - -  i.e., optimal 

strategy in H s - -  is actually to destroy its entire endowment f  3 We shall then 

show that the value of v is the same as that of a coalitional game q in which q(S) 
is the total utility of S when this threat is carried out. 

Define coalitional games r = rM and q = qM by 

(11.1) 

and 

(11.2) 

r ( S ) = s u p { f s  u(x): fs x = e ( S ) }  

r q ( S )  = ( s )  i f  > '  
i [  

Note that if r(T) is finite then r(S) is finite for all S. We shall say that r(S) is 

attained if it is finite and there is an S-allocation x with r(S)= fsu(x).  

PROPOSITION 11.3. Assume that v is defined. Then r(S) is attained whenever 
/ z ( S ) >  1/2, and for all S we have 

w(S) = q ( S ) -  q(T\S). 

PROOF. That v is defined means that all the H s have saddle points. Let (o'0, ~'0) 

be a saddle point for H s. Suppose first that /z  (S) > 1/2. Using the r of (6.2), we 

23 O f  c o u r s e  th is  t h r e a t  is no t  c a r r i e d  ou t  in t he  f inal  o u t c o m e .  
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find that there is an S-al locat ion x such that h,,,,,(t) < s  = u , (x ( t ) )  for all t @ S. 

Hence  from (4.6) and (4.5) we get 

n~(o',,,r,O<=HS(o'o,r)<- f~ h,L<-_ i, u(x). 

Applying (6.1) to this same S-al locat ion x, we get a strategy o" of S such that 

>- u,(x(t)) 
hS"( t )  = 0 

Again using (4.6) and (4.5) we get 

HS (o',,, r , , ) -  > HS(,r,  r , , )= fs 

Hence  

if t E S 
if t ~  S. 

h~,,,- ,~ ho~,,= u(x). 

(11.4) w ( S ) =  HS(o-,,,7-,,) = fs u(x ) .  

Suppose now that r (S)  is not at tained at x, i.e. that there  is an S-al locat ion x '  

with f s  u (x ' )  > f s  u (x) .  If o" cor responds  to this x '  in accordance  with (6.1), then 

again using (4.6) and (4.5) we get 

h e r , T (  I - -  S I HS(o-,,,  ~,,)_- > H ( , , - ,  ~-,,) = ~ h u ( x ' )  > u(x), 
I",S 

contradict ing (11.4). Hence  when # ( S ) >  1/2, r (S)  is a t ta ined at x, and 

(11.5) q ( S ) - q ( T \ S ) =  r ( S ) =  fs  u ( x ) =  w(S) .  

Next,  note  that H s  (or, 7-) = - Hr"s (7., er). Hence  (o',,, 7-,) is a saddle point of H r's, 

and therefore  

(11.6) w ( S )  = - w ( T \ S ) .  

This shows that when ~ ( S ) <  1/2, 

q ( S ) -  q ( T \ S )  = - r ( T \ S )  = - w ( T \ S )  = w(S ) .  

Consider  finally the casc ~ ( S ) =  1/2. We have already shown that r ( T )  is 

a t ta ined and in part icular  is finite, and hence r (S )  is also finite. Given e > 0, let x 

be an S-al locat ion with fs  u (x)  > r (S)  - e. By (6.3), there  is a strategy o- of S and 

a T\S-a l loca t ion  y such that 
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(11.7) 
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hSo(t){~=u,(x(t)), t E S  
u,(y(t)), t E T\S . 

w(S)=HS(o'o, ro)~HS(o',ro)>= fs u ( x ) -  fr\s 

> r ( S ) -  e - r(T\S)  = q ( S ) -  q ( T \ S ) -  e. 

Since also /x (T \S )= 1/2, we deduce 

w ( r \ s )  > q ( T I S ) -  q ( S )  - e ; 

hence by (11.6), 

(11.8) 

u ( y )  

207 

and hence 

h~, ,=  max u(y): y = e(S = r(S)= u(x) 

HS(o', ro)<- fs u(x). 

w(S) < q ( S ) -  q( T\S)  + s. 

Letting e---~0 in (11.7) and (11.8), we obtain the desired result. 

COROLLARY 11.9. Assume that v is defined. Then v has a ~z-value if and only 
if q does, and in that case the tz-values are equal. 

PROOF. From Proposition 11.3 and (4.8) we obtain 

(11.10) v(S) = �89 [q*(S) + q(S)],  

and the result then follows from (3.1). 

PROPOSITION 11.11. Assume that all the r(S) are attained. Then all the games 
H s have saddle points, i.e. v is defined. 

PROOF. First let ~ ( S ) >  1/2. Let r(S) be attained at x, By (6.1), there is a 

strategy o-o of S such that for all strategies r of T\S, fshSoT>=fsU(X) and 

f r\sh So~ = 0; hence 

H'(o-,,, ~-) _-> f~ u(x ) .  

On the other hand, by (6.2) there is a strategy ro of T\S such that for all 

strategies o- of S, 
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Hence (tr0, Zo) is a saddle point of H s. Since Hr~S(z, tr)= -HS( tr ,  z), we have 

completed the proof when /z (S)>  1/2 or / z (S)<  1/2. 

Assume now that /~(S) = 1/2. Then also t z (T \S)= 1/2. Then by (6.3), there is 

a strategy tro of S such that for all strategies ~" of T\S, 

HS(~176 r)--> fs u ( x ) -  r (T \S)= r ( S ) -  r(T\S).  

Similarly, there is a strategy Zo of T\S such that for each strategy tr of S, 

Hr'S(ro, o') _-> r(T\S)  - r(S) 

and hence 

H s (o', To) <-- r(S) - r(T\S) .  

Hence (O'o, Zo) is a saddle point. This completes the proof of Proposition 11.11. 

PROPOSITION 11.t2. A necessary and sufficient condition that an allocation x 
in M be a commodity tax allocation is that there exists a comparison function A 

such that vA is defined and has a tz-value given by 

(11.13) (~bv~)(S) = f au(x) .  
.Is 

PROOF. The necessity follows immediately from the definitions. To prove the 

sufficiency, note that by (6.1), there is a strategy cr of T such that 

(11.14) hr,(t)>= u,(x(t)) for all t. 

Multiplying (11.14) by A(t), integrating over T, and using (3.2), we obtain 

f Xh =f Au(x)=(ckv~)(T)=v~(T).  (11.15) 7-> 

But by applying (4.8) to the game AF, we may deduce v~(T) = w~,(T); and then 

applying (4.7) to ,k F, we deduce v~ (T)>= fAh  s. Combining this with (11.15), we 

deduce fAh~  = fAu(x) ,  and hence equality holds a.e. in (11.14). Hence 

f, fs 
for all S in ~, and hence h T is a value; since equality holds a.e. in (11.14), it 

follows that u(x) is a value and so x a commodity tax allocation. This completes 

the proof of Proposition 11.12. 
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The major conclusion of this section is Corollary 11.9, which enables us to 

replace the rather complex strategic game F, for purposes of calculating the 

value, by the relatively transparent coalitional game q. What enables us to do 

this is the explicit calculation, in Proposition 11.3, of the optimal threat strategies 

tro and Zo of the majority and the minority: namely, for the majority to tax at 

100%, and for the minority to destroy its entire endowment.  

12. Preliminaries on non-atomic games 

In proving our results, we shall make extensive use of the theory of 

non-atomic games developed in [4]. This section is devoted to reviewing some of 

the relevant results of that theory. 

The asymptotic value of a game ([9], [4, section 17]) is defined in exactly the 

same way as the/~-value (Section 3), except that the IV, need not have equal 

g-measure,  and the ~ (S) need not be rational. If under these conditions, ~ , (S )  

still tends to a limit (4~v) (S) and the limit is independent of the choice of the 

sequence of partitions, and if this is true for all S in ~r then ~v is called the 

asymptotic value of v. Obviously we have 

REMARK 12.1. I[ the asymptotic value o[ v exists, so does the/~-value, and they 

are equal. 

Throughout this section, r will refer to a general (coalitional) game, not 

necessarily of the form (11.1). A game r is said to be monotonic if S D U implies 

r(S) >-_ r(U). It is of bounded variation if it is the difference of monotonic games; 

the linear space of games of bounded variation on (T, ~ )  is denoted BV. The 

variation norm (or simply norm) on B V  is defined by 

[[rl[ = s u p ~  [r(S,)-r(S,_,)[,  
i = l  

where the supremum is over all chains of coalitions 0 = So C. �9 �9 C S, = T. 

The bounded games on (T, qg) form a linear space called BS; clearly 

BS D BV. The supremum (or sup) norm on BS is defined by 

IIr II '=  sup [ r(S)l, 

where the supremum is over all S in ~. 

The non-atomic o--additive measures form a subspace of B V  called N A  ; the 

subset of N A  consisting of non-negative measures v with v ( T ) =  1 is called 

NA1. The set of all linear combinations of positive integer powers of N A  ~ 
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measures is called P;  games in P are called measure polynomials. The variation 

closure of P in B V  is called pNA, and the sup closure of P in BS is called pNA '. 

Clearly pNA C pNA' .  
The set of measurable functions from (T, q~) to [0, 1] is denoted r It is useful 

to think of a member  of ~r as an "ideal"  subset of T; the number f ( t )  is the 

"degree"  to which the point t belongs to the ideal set f. Ordinary sets correspond 

to functions whose value is either 1 or 0, which is interpreted as meaning that the 

point either "completely belongs" or "completely fails to belong" to the set. If 

S ~ ~, we denote  by Xs the characteristic function, defined by Xs(t) = 1 if t E S, 

and Xs(t) = 0 if tff  S. An ideal game is a function from r to the real numbers 

that vanishes at 0. The linear subspace of all bounded ideal games is denoted 

IBS; on it we define the supremum (or sup) norm by 

tt r II' = sup {l r (f)[: f E 5~ }. 

PROPOSITION 12.2. There is a unique linear, sup-continuous mapping that 

associates with each game r in p N A '  an ideal game r*, so that 

(12.3) (vk) * = (v*) k, and 

(12.4) v*(f) : fT f ( t )v(d t )  

for all measures v in N A  1, positive integers k, and ideal sets f. 

This is proposition 22.16 of [4]. The operator  r ~ r* is called the extension 

operator; this name is justified by the following proposition: 

PROPOSmON 12.5. I f  r E pNA ', then r*(Xs ) = r(S). 

PROOF. If r E NA1, the proposition follows from (12.4); hence by (12.3), it 

follows for all powers of N A  ~ measures; by linearity of the extension operator,  

for all measure polynomials; and finally, by sup-continuity, for all of pNA' .  

If r E pNA ', t E (0, 1), and S E c~, denote 

Or*(t, S) = lira r*(tXr + r--)Ls-~-- r*(tXr ) 
r ~ O  1" 

At this point we are of course making no claim about the existence of this limit, 

we are merely introducing a notation. If v E NA 1 and r = v k for some positive 

integer k, then 

(12.6) Or*(t, S) = ktk- 'v(S) .  
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Define D I A G  as the linear space of all r in B V  for which 

(12.7) there is a positive integer k, a k-dimensional vector ~ of measures in 

N A  ~, and a neighborhood U in E k of the diagonal [(0 . . . . .  0), (1 . . . . .  1)] 

such that if ~(S)  E U then r(S)  = O. 

Motivation for this definition may be found in [4], on p. 252. Define p N A D  to be 

the variation closure of p N A  + D I A G  (or equivalently,  of P + D I A G ) .  

PROPOSITION 12.8. Let r ~ p N A D  fq p N A  '; then r has an asymptotic value dpr. 

Furthermore, for each coalition S, the derivative ar*(t, S) exists for almost all t in 

[0, 1] and is integrable over [0, 1] as a function of t; and 

(12.9) 

Finally, 

(12.10) 

f0 
1 

(c~r)(S) = 9r*(t, S)dt. 

fo IIr II ~ I cgr*( t, S)ldt.  

PROOF. The three sentences are, respectively, corollary 43.12, proposit ion 

44.22 and formula (44.23) of [4]. 

PROPOSITION 12.11. Suppose r in B V  f q p N A '  is of the form rl+ r2, where 

r~ ~ DIAG.  Then f~l 0r*(t, S)ldt  <= I1 r2 [[, and I r*(aXr)l<_ - IIr=ll for all a between 0 

and 1. 

PROOF. The first assertion follows from formula 24 (44.23) and lemma 44.14 of 

[4]; the second from lemma 44.14 of [4]. 

A game r in p N A '  is called homogeneous of degree 1 if for all a in [0, 1] and all 

S in ~, we have r*(aXs)= ar(S).  

PROPOSITION 12.12. Let r in p N A D  fq p N A  ' be homogeneous of degree 1. Then 

for all S in qg and all t in (0, 1), 

ar*(t, S)  = (&r)(S). 

PROOF. Existence of Or*(t, S)  for almost all t follows f rom Proposition 12.8. 

Then reasoning precisely as in the proof of lemma 27.2 of [4] we deduce that 

ar*(t, S)  exists and is the same for all t in (0, 1). The fact that it must be ~br then 

follows from (12.9). 

24 The 8-norm II ]l~ appearing in this formula is defined on p. 262 of [4]. 
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13. The value of truncated games 

Corollary 11.9 indicates the importance of the game q defined in (11.2), which 

we might say is derived from r by "truncating" below/~ (S) = 1/2. In this section 

we prove a proposition that relates the value of a "truncated" game q to that of 

the corresponding untruncated game r in a more general context, one in which r 

is not necessarily derived from a market. 

PROPOSITION 13.1. Let I~ E N A  ', let r E p N A D  n pNA ', and let 0 < a < 1. 

De]ine 

fr(S) if 
(13.2) q(S)-- t o  otherwise. 

Then q has a tz-value, given by 

(13.3) (tbq) (S) = r*(ctx-r)~(S)+ f l 0r*(t, S)dt. 

The proof is along lines similar to those used in section 18 of [4]. Let S E c~,, 

and let ~ = {IL,II2, . . .} be a separating sequence of partitions of T into 

coalitions of equal/z-measure,  such that S is a union of members of II1. Let ~, ,  

be a random order on l-Ira, i.e. a random variable whose values are orders on l-I,,, 

in which all of the IH,, I! possible orders have the same probability. Let B'~ be 

the h-th member of H,. in the order ~,. ,  and set 

Q7 = a ? u  . . .  u BT. 

The following iemma is proved in [4, p. 132, corol. 18.10]: 

LEMMA 13.4. Let ~ be a vector of NA~ measures. Let U be a neighborhood of 

the "diagonal" in the range of ~, i.e. the line segment with end points ( 0 , . . . , 0 )  

and (1 , . . . ,  1). Then [or every e, there is an too, such that for m >= too, 

Prob{~(Q"~)EU ]:orall h with l = < h _ - < l H , , l I > l - e .  

In words, this says that for sufficiently fine partitions, the sequence ~'(Q~') will 

with high probability remain in an arbitrarily small neighborhood of the 

diagonal. 

We now proceed with the 

PROOF OF PROPOSITION 13.1. Fix m, set H =IIm, ~ = ~,,, Bh = BT, Qh = QT, 

and n = I III. For each h between 1 and n, let 
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{10 i f B h C S ,  
zh = otherwise. 

Let h* be the smallest integer not smaller than an. Set 

A = A " ( r ) =  ~ [ q ( Q . ) - q ( Q h  ,)]zh 
h = l  

(13.5) 
= r(Qh.)Zh. + ~,  [ r ( Q s ) -  r(Qh-1)]zh, 

h > h *  

where Qo = ~ .  The expression A is the total contribution of the players in S,, 

(i.e. the players of the finite game q,. who are included in S) to q,., when H is 

ordered according to ~ ;  thus 

(tbq,.) (S, .)= E a ' ( r ) .  (13.6) 

Set 

L 
1 

Or = r*(c txT)g(S)+ tgr*(t, S)dt;  

we wish to prove that E~"(r ) - ->  Or as m--~oo. 

Consider first the special case in which r = v ~, where v E N A  1 and k is a 

positive integer. Setting f ( x ) =  x k, we obtain 

r(Qh ) - r(Qh-~) = f(v(Q~_~) + v(Bh )) - f (v (Qh- , ) )  = v(Bh )f'(Xh ), 

where 

(13.7) t,(Qh_,) <- Xh <= t '(qh); 

thus (13.5) becomes 

(13.8) A = f ( v ( Q h . ) ) z , . +  ~ t ' (n , ) z , f ' (Xh) .  
h > h *  

Let r/(e) be the minimum of the moduli of uniform continuity of f and f '  on 

[0, 1]. Let ~ = (/z, v), and for each e > 0 define a neighborhood U of the diagonal 

in the range of ~" by U = {(x, y): Ix - y I<  r/(e)/2}. From Lemma 13.4 it then 

follows that for m sufficiently large, we have with probability > 1 - e that for all 

h, 

I v(Q~)-  h l n l  = [ v(O~)-  ~(Q~)I < rl(e)/2. 

From this and (13.7) it follows that for m sufficiently large, 

Ixh - h /n[  < r / (e) /2+ 1/n < Tl(e ). 
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Hence  if t h roughou t  (13.8), we replace  ~'(Qh) and xh by h/n, then we are with 

probabi l i ty  > 1 - e making  an e r ror  < e. Thus  we may write 

z ~ = f ( h * / n ) z h . +  ~ u(B , ) za f ' (h /n )+tO 
h > h *  

for  m sufficiently large, where  I t o l < e  with probabi l i ty  > l - e  and ]to l is 

bounded ;  the b o u n d - -  let us call it C - -  is the m a x i m u m  o f / f ' l  on [0, 1]. Since 

the Bh have  e q u a l / z - m e a s u r e ,  it follows that  the n u m b e r  of Bh such that  B, C S 

is precisely np.(S);  f rom this we conclude that  EZh. = /s (S)  and E(V(Bh)Z , )=  

v(S) /n  for all h. H e n c e  

E(A)  = f ( h * / n ) # ( S ) +  ~, f ' ( h / n ) u ( S ) / n  + th, 
h ~ h  ~ 

where  161 < 2eC for m sufficiently large. The  fact that  161 becomes  arbitrari ly 

mall  for m sufficiently large means  that  ~ =  th '---~0 as m - - * ~ ;  f rom the 

definit ion of the R i e m a n n  integral  it then follows that  

(13.9) l i m  E a " ( r )  = f ( a ) l s ( S ) +  f ' ( t )v(S)dt .  

But by (12.3), f ( a ) =  a k =  (v*(aXr) )  k =  r* (aXr) ;  applying this and (12.6) to 

(13.9), we deduce  that  when r = u k, then indeed EA"(r)---~ Or. F r o m  this and the 

addit ivi ty of E ~ ( r )  as a funct ion of r, it follows that  

(13.10) E~"(r)---~Or for r E P ,  

i.e. when r is a measu re  polynomial .  

Suppose  now that  r is an arbi t rary  m e m b e r  of p N A D  n pNA ' .  Let  e > 0 be 

given. Since p N A D  is the var ia t ion closure of P + D I A G ,  we have  r = 

r,, + rl + r,_, where  ro E P, r, E D I A G ,  and II r2 II < e. Let  ~" and U cor respond  to rl 

in accordance  with (12.7). Then  by L e m m a  13.4, for m sufficiently large we have  

with probabi l i ty  > 1 - e that  ~'(Qh) E U for  all h, and hence  a " ( r l )  = 0. F r o m  

Propos i t ion  12.11 it follows t h a t  - j O(rl + r2)[<= 211 r2 [[ (note that  

r~ + r2 = r - ro E p N A  '). H e n c e  by (13.10) and Propos i t ion  12.11, we have  that  for  

m sufficiently large, 

I EZ~m(r) - Orl <= I E N " ( r , , ) -  Orot + I Earn  (rl)I + IEa"(r2)l  +tO(r, + r2)l 

< ~ +O+[[r21[+2[[r2]t<4e. 

H e n c e  E~"(r)---~ Or as m ---, zc, and so by (13.6), (&q,,)(S,,)--~ Or as m ---~ :*. This  

comple tes  the p roof  of Propos i t ion  13.1. 
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COROLLARY 13.11. Let r in p N A D  O p N A '  be homogeneous of degree 1. 

Define q by (13.2). Then q has a ~z-value, given by 

(13.12) (~bq)(S) = ar(T)/z (S) + (1 - a)(cbr)(S).  

PROOF. Proposi t ions 13.1 and 12.12. 

14. Characterization of commodity tax allocations in the many-commodity 

non-atomic case: Proof of Proposition 9.14 

Let us he given a non-a tomic  market  M, and let F = F (M)  be the cor respond-  

ing commodi ty  redistr ibut ion game. Boundedness  of M will be assumed only 

when specified. 

The  marke t  M will be called integrably sublinear 25 if for  each e > 0 there  is a 

/z- integrable function • on T such that u , ( x ) =  < ellx II whenever  IIx II > ~?(t). A 

transferable utility competitive equilibrium (t.u.c.e.) in M (see A u m a n n  and 

Shapley [4], section 32) is a pair  (x,p) where  x is an allocation and p a price 

vector,  such that a.e. u,(x) - px attains its max imum over  x in 1~ at x = x(t).  If A 

is a compar ison function, then clearly (x, p)  is a t.u.c.e, in AM if and only if (A, p)  

is an efficiency pair for x in M. 

Define the coalit ional games v, w, r and q by (4.8), (4.7), (11.1), and (11.2). 

PROPOSITION 14.1. Let M be integrably sublinear. Then 

(14.2) r(S) is attained for all S, and 

(14.3) v is defined. 

Furthermore, if (x ,p )  is a t.u.c.e, for M, then v has a ~z-value c~v, given by 

1 
fs [ r ( T ) +  u ( x ) - p ( x -  e)]. (14.4) (~bv )(S) = -~ 

PROOF. (14.2) is a special case of the main theorem of [3] (see also [4, prop.  

36.1]). Asser t ion (14.3) follows f rom (14.2) and Proposi t ion 11.11. Next,  we note  

that r E p N A D  71 p N A '  and is h o m o g e n e o u s  of degree  1; this follows f rom [4, 

corol. 45.8 and prop.  45.10]. Hence  by Corol lary 13.11 with a = 1/2, the game q 

has a /z-value, given by 

(14.5) (~bq)(S) = �89 (S) + �89 

2, Shapley and Shubik [15] use the term "sublinear" to describe a function that is o(llx [1) as 
II x [I---~ oo. The concept of integrable sublinearity was introduced by Aumann and Perles [3], though 
they used somewhat different terminology (u,(x)= o(11 x 11), integrably in t). For a discussion of the 
concept, see [4, p 183]. 
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Proposition 32.3 of [4] asserts that r has an asymptotic value, given by 

(14.6) (4~r)(S) = fs [ u ( x ) - p ( x  - e)]. 

By (14.3), v is defined, and so from Corollary 11.9 we deduce that v has a 

#-value 4w equal to thq. Formula (14.4) then follows from (14.5) and (14.6). This 

completes the proof of Proposition 14.1. 

Note that F(AM) = AF(M) for all comparison functions A. Recall that v~ is the 

Harsanyi coalitional form of AF. Similarly, define r, = r,M and qA =q~M; 

explicitly, 

(14.7) r a ( S ) = s u p { f  s Au(x): fs x = e ( S )  }, 

q , ( S ) = [ r , ( S ) ,  when /z (S) => �89 
(14.8) 

tO , otherwise. 

PROPOSITION 14.9. Let M be bounded, and assume that rA ( T) < ~. Then AM is 
integrably sublinear. 

PROOF. Let 0 = min{1,fel ,  .. . , f e ' }  and 6 = inf, u , (1 , . . . ,  1); by (5.4), 0 >0 ,  

and by (5.7), 6 >0 .  Define an allocation y by y ( t ) = f e  for all t. Then 

u,(y(t)) >- u,(O, " ", O) >= Ou,(1, " . ., 1) + (1 - O)u,(O," . ", O) >-_ 06. 

Hence 06fA <= fAu(y)<= r,(T),  and so A is integrable. 

Let fl be the uniform bound on u, provided by (5.6). Then for each e > 0, 

Ilx II => , l ( t )u,(x) <  llx II. 

Since A( t )~ le  is integrable, it follows that AM is integrably sublinear. 

PROPOSITION 14.10. Let M be bounded, let x be an allocation in M, and let ~ be 

a comparison function. Then a necessary and sufficient condition that v, be defined 

and have a I~-value given by (11.13) is that there exists a price vector p satisfying 

(9.1) (the definition of  efficiency pair) and (9.15). 

PROOF. First assume (9.1) and (9.15) a.e. From (9.1) we obtain 

(14.11) f 
r~(T) = J Au(x), 

and in particular r , , (T)<~ .  Hence by Proposition 14.9, AM is integrably 

sublinear. Hence by Proposition 14.1, v~ has a /z-value &vA, given by 



Vol. 27, 1 9 7 7  MULTI-COMMODITY ECONOMY 217 

(14.12) (r = ~ [rA(r) + l u  ( x ) -  p(x - e)l. 

On the other hand, by integrating (9.15) over S and rearranging, we find 

1 
(14.I3) is l u ( x ) = ~  Js [ ( f  l u ( x ) ) + l u ( x ) - p ( x - e ) ] .  

Combining this with (14.11) and (14.12), we deduce (11.13). 

Conversely, assume that v~ is defined and has a tx-value gwen by (11.13). 

Then by Proposition 11.3, rA(T) is attained and in particular r~(T) < :~, Hence by 

Proposition 14.9, AM is integrably sublinear. From (11.13) and (3.2) it follows 

that f lu(x)= v,(T). From (4.8) and Proposition 11.3 it follows that v,(T)= 
r~(T), and hence (14.11) holds. Hence there is a p such that ( l , p )  is an efficiency 

pair for x, i.e. such that (x, p) is a t.u.c.e, in AM. From the integrable sublinearity 

of AM and (14.4) we then obtain (14.12). Combining this with (11.13) and 

rearranging, we get 

fs lu(x)= Is [rA(T)-p(x-e)] 

for all S. Hence a.e. 

l(t)u,(x(t)) : r ,(T)- p(x(t) - e (t)). 

Combining this with (14.11), we deduce (9.15). This completes the proof of 

Proposition 14.I0. 

Proposition 9,14 follows immediately from Propositions 11.12 and 14.10. 

15. Non-atomic one-commodity markets: Proof of Theorem C 

Since I = 1, we may in Proposition 9.14 take p = 1. For any allocation x we 

have fx =fe >0 ,  hence flu(x)>O; so if x satisfies (9.15), then a.e. x ( t ) > 0 .  

Then applying (9.5), we deduce (8.1). Conversely, if x(t)> 0 a.e. and (8.1) holds, 

then from (9.5) we get (9.15). Hence we have established the second sentence of 

Theorem C, i.e. that the tax allocations x are precisely those for which x(t) > 0 
a.e. and (8.1) holds. It remains to prove that there is precisely one such x. 

Define 

",__4s) + g,(x): u',(x) x" 

g, is increasing and continuous, is defined for all non-negative numbers, vanishes 
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at 0, and tends to infinity as x ---~ oo. Hence its inverse gT' is defined and has the 

same properties. Moreover,  g,(x)> x when x > 0, and so 

(15.1) g ; l ( y ) <  Y when y > 0 .  

For each non-negative number y, define 

(15.2) f(3") = f~_ g; '(r  + e(t))l~(dt); 

by (15.1) the integrand is integrable, so there is no difficulty with the finiteness of 

the integral. Again using (15.1) we get 

f(o) < S ~. 

By the monotone convergence theorem we may go to the limit under the 

integration sign in (15.2); then using the fact that g, ' (x )~ac  as x ~oo,  we 

deduce that for sufficiently large y, 

f(3")> f e. 

Moreover  f is strictly increasing (since the g,' are); and it is continuous, since by 

the definition of g,, I g;'(Y2)- gT'(yl)l < l Y: - yl I. Hence there is one and only 

one 3/ with f(3")=fe; denote this 3' by c and set 

(15.3) x(t) = g,'(c + e(t)). 

By construction x is an allocation, and satisfies x ( t ) > 0  for all t. From (15.3) we 

obtain 

x(t)+ u,(x t ~ :  e(t)+ c, 
u;(x(t)) 

and so integrating and using the fact that x is an allocation, we deduce 

c = fu(x)/u'(x).  Thus there is an allocation satisfying the conditions of the 

corollary. Conversely, if x is an allocation satisfying (8.1), then it also satisfies 

(15.3) with c = fu(x)/u'(x) .  Integrating (15.3) yields 

f e = fr g?'(c + e(t))~(dt)= f(c). 

Thus c is the same as the one previously found, and so x also is. This completes 

the proof of Theorem C. 
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16. Equivalence: Proof of Theorem B 

Let M be a market.  First we settle an old debt: the proof that the derived 

markets M p are indeed markets, and in particular satisfy the differentiability 

condition. 

LEMMA 16.1. For each price vector p, the derived market M p satisfies conditions 

(5.1) through (5.5); and if M is bounded, so is M p. 

PROOF. The verification of (5.1) through (5.4) is straightforward. To prove the 

differentiability condition (5.5), write u, = u, and let y > 0. Since u p is concave, it 

possesses a right derivative D ' u P ( y )  and a left derivative D - u P ( y )  at y, and 

(16.2) D+uP(y) <~ D-uP(y ) .  

Let the maximum in the definition of uP(y) be achieved at x, i.e. u P ( y ) =  u(x)  

and px = y. Let a, be the i-th unit vector in ~,  i.e. a', = 1, a j, = 0 for j / i .  For 

> 0  we then have uP(y +p'~)_-> u(x + 6a,), hence 

[up(y + p ' ,~)-  up(y)l/~ => [u(x + 8 a , ) -  u(x)]16, 

and hence letting 6 ~ 0, we deduce 

(16.3) p'D+uP(y ) >= u ' (x  ), 

where u '=Ou/Ox ' .  If, moreover,  x ' > 0 ,  then for 0 < ~ < x '  we have 

uP(y - p'8)>= u(x  - ~a,), hence 

[up(y - p ' 8 ) -  u p(y) ] / ( -  8) _<- [u(x - ~a,)-  u(x)]l(-  8), 

and hence letting 6 ~ 0, we deduce 

(16.4) p ' D - u P ( y )  <= u ' (x) .  

Since y > 0 ,  there must be an i with x'  > 0 ;  for this i we may combine (16.2), 

(16.3) and (16.4) to deduce D + u P ( y ) =  D uP(y), i.e. u p is differentiable at y. 

The continuity of the derivative is then a consequence of the concavity of u p. 

If M is bounded, then the verification of (5.6) for M p is straightforward. To 

prove (5.7), write Yp for El=~p'. Then 

uP(Zp) = max{u(x) :px  = Zp}--- u ( 1 , . . . ,  1). 

If Ep _-> 1, then by the concavity of u p it follows that 

uP(1)~ ~ uP(~,p)+ (1 1 \  p :> 1 - ~ ) u  (0) = ~-~-p u (1, �9 �9 1). 
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If Zp _-< 1, then by the monotonicity of u p it follows that 

u P ( l ) =  > u'(Zp)>= u ( 1 , . . . ,  1). 

Since u ( 1 , . . . ,  1)= u , (1 , . . . ,  1) is uniformly positive by assumption, it follows 

that so is u P ( l ) =  ue,(1), and the proof of (5.7) - -  and so of Lemma 16.1 - -  is 

complete.  

For future reference we note the following corollary. 

COROLLARY 16.5. Iet  the maximum in the definition of u ~, (y) be achieved at x. 
Then (u~,) '(y)= > u',(x)/p'; and if x' > 0 ,  then (uP,)'(y) = u',(x)/p'. 

PROOF. Follows from (16.3), (16.4), and the differentiability of u~. 

PROOF OF THEOREM B. First let x be a commodity tax allocation in M. Then x 

is efficient, say with efficiency pair (A, p), and obeys (9.15) (by Proposition 9.14). 

Hence x ( t ) / 0  a.e., and so from (9.12) and (9.13) we deduce (9.16). By Lemma 

16.1, M p is bounded, and so Theorem C applies to it; thus (9.16) shows that px is 

a lax allocation in M p, i.e. (7.3)is satisfied. The other condition for (x ,p) to be a 

competit ive tax equilibrium - -  Condition (7.2) - -  follows from the fact that p is 

an efficiency price vector for x. Hence x is an income tax allocation. 

Conversely, let x be an income tax allocation. Then there is a p satisfying (7.2) 

and (7.3), and also a A such that (A,p) is an efficiency pair for x. By (7.3) and 

Theorem C we have (9.16), hence a.e. x ( t ) / O ,  hence (9.12) and (9.13) yield 

(9.15), and hence by Proposition 9.14, x is a commodity tax allocation. This 

completes the proof of Theorem B. 

17. Existence in the non-atomic case 

The idea of the proof is as follows: For each price vector p, consider the 

market  M e derived from M at prices p. By Theorem C, M p has a unique tax 

allocation, which assigns to each trader a certain income. This income generates 

a certain demand, and so we get a certain total excess demand. We can then 

apply Debreu ' s  lemma [5, p. 82], and deduce that there is a p for which the 

excess demand contains 0. But this yields a competit ive tax equilibrium, hence 

an income tax allocation in M, and so by Theorem B a commodity tax allocation 

in M. 

Let A = {p ~ ~ :  Xl~lp' = 1}. Let Int A denote the relative interior of A; every 

point in Int A is a price vector. Let 0A = A\Int A. We will make use of the 

following variant of Debreu ' s  lemma, proved in [8, p. 150, lemma 1]: 
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LEMMA 17.1. Let Z be an uppersemicontinuous, 2~ compact-valued correspon- 

dence 27 from Int A to E '  that is bounded from below, TM such that 

(I7.2) pz =0 for all z E Z(p) ,  

and such that 

(17.3) if the sequence {p.} in Int A converges to p., in OA then 

inf { 2  z "  z E Z(P")} 

Then there is a p in Int A such that 0 is in the convex hull of Z(p) .  

We proceed  in a series of lemmas. 

LEMMA 17.4. For all t in T, y >0 and p in Int A, uP,(y) and (uP,)'(y) are 

continuous in (p, y ). 

Pnoov.  Fix t and write u, = u, u p, = u p . The continuity of uP(y)  follows f rom 

the definition (7.1). To  prove the continuity of (u p)'(y ), let p, --~ p, y,, ---, y, and let 

the max imum in the definition of uP-(y,)  be at tained at x,, i.e. u P - ( y , ) =  u(x, )  

and p,x, = y.. Then  lim sup x,' _-< y/p'  for all i, so that {x,} is bounded ;  let x be a 

limit point of {x.}, w.l.o.g, the limit. Then px = y and u P ( y ) =  u(x)  (by the 

continui ty of uP(y)).  Since px = y, there is an i with x '  > 0 ;  then for n 

sufficiently large, also x,', > 0. Applying Corol lary 16.5 and the continui ty of u',  

we deduce  

u'(x.)__+ u ' (x )  = (up),(y);  
(u"~ = p :  p, 

this completes  the proof  of the lemma. 

LEMMA 17.5. Suppose that for each p in Int A, h p is an increasing continuous 

function from R '  onto R ' ,  such that hP(y)  is continuous in (p, y). Then the 

inverse functions ( h P) ' are defined, increasing, continuous, and take R + onto R +; 

and (h p) '(z) is continuous in (p, z). 

Peoov.  Except  for the continuity of ( hP ) - ' ( z )  in (p, z), the lemma is readily 

verified. To  prove the continuity,  let (p,, z, )-* (p,,, Zo) E IntA x R +. Set y, = 

(h po) ~(z.) for n = 0 , 1 , 2 , " ' .  We wish to show y,---~y,. Since 

-'" By this we mean that each p has a neighborhood in which the graph of Z is closed. 
~~ A correspondence is a set-valued function with non-empty values. 
-'" l.e. there is a y m E' such that x_->y for allp and all x m Z(p). 
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h"~ + 1)~ h"o(yo + 1)>  h"o(yo)= Zo 

and z,---> zo, it follows that z. < hP-(yo+ 1) for sufficiently large n. Hence 

yn = (hPn)-- l(z t l )  ( y{ Dr- 1, 

and so {y,} has a limit point y'. Allowing n ~ through values for which 

y,--~ y',  we obtain from the continuity of hP(y) in (p, y) that 

z,, = lim z. = lim h P-(y,) = hpo(y'). 

Hence y '  = (hP")-'(zo) = yo. Thus {y.} has a limit point, and every such limit point 

is yo, which means y. ~ y,,. This completes the proof of Lemma 17.5. 

For p E IntA, let yP be the unique tax allocation of M p provided by Theorem 

C. 

LEMMA I7.6. y"(t) is a.e. continuous in p. 

PROOF. We closely follow the proof of Theorem C (Section 15), keeping track 

of the parameter  p. Set 

(17.7) g~(y) = y + u~,(Y) 
(u~) ' (y )  

Then gP, satisfies the hypotheses of Lemma 17.5, and so its inverse (g~,) ~ is 

defined, continuous and increasing, takes R ~ onto R +, and (gP,)-l(z) is continu- 

ous in (p, z); moreover from (17.7) we get 

(17.8) (g~,) '(z)<z for z > 0 .  

Defining i f ( y ) =  fT(gr '(Y +pe(t))t2(dt), we deduce from Lebesgue's domi- 

nated convergence theorem (using (17.8)) that F ( ~ )  is continuous in (p,',/). 

Moreover  f" is strictly increasing, and from the monotone convergence theorem 

it follows that f " ( 7 ) ~  as 3 , ~ .  If we define hP(3 , )=f"(y) - fP(O) ,  then h p 

obeys all the conditions of Lemma 17.5, and so (hP) -' is defined, increasing, 

continuous, takes R + onto R +, and (hP)-~(fl) is continuous in (p,/3). From (17.8) 

and (5.4) it follows that hP(0) = 0 < fpe - if(O). Hence (hP)-'(fpe - i f (0))  is 

defined and continuous in p; call it c p. Then f f ( c  p) = hP(c p) + i f ( 0 )  = fpe. From 

(15.3) we then deduce 

(17.9) y"(t) = (g~)-'(c" + pe(t)), 

and so from the continuity properties of (g~,) ' and c" we deduce the assertion of 

our lemma. 
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COROLLARY 17.10. For each compact subset C of Int  A, there is a constant c 
such that yP(t)<= c + pe(t) for all t and all p in C. 

PROOF. F rom (17.8) and (17.9) we get y~(t)<-_ c ~ + pe(t). From the cont inui ty  

of c e and the compac tnes s  of C it follows that c" is b o u n d e d  in C, which proves  

the corollary.  

Let  

(17.11) B e ( t )  = {x E f l :  px <-_ ye(t)}, 

and let De(t) be the set of e l ements  of Be(t) at which u, is maximized;  DP(t) is 

t ' s  (after  tax) demand at prices p. Let  D(p)= fD p, and let Z(p)= D ( p ) - f e ;  
D(p) is aggrega te  demand ,  and Z(p) aggregate  excess demand .  

We  note  for  future  re fe rence  that  

up`(y) > 
(17.12) (u f ) ' (y)= y 

for all p, y, and t" this follows f rom the concavi ty  "of up`. 

LEMMA 17.13. If the sequence {p~ in Int  A converges top~, in OA, then a.e. 

inf x'. x ~ De,(t) --->or 

PROOF. Let  6 = min, re'; by (5.4), 6 > 0. F r o m  (17.12) and the fact that  yP is 

an al location in M e it follows that  for all p in Int  A, 

f uP(Y e) > f  y e = f  pe>6.  (ue),(yp) = = 

Hence  f rom T h e o r e m  C it follows that  for all p in Int  A, a.e. 

(17.t4) ye(t)+ u;(ye(t)) =pe(t)+ f ue(Ye))_-  > 6. 
(up` )'(yP (t )) (ue )'(y" 

If the l e m m a  is false, then there  is a set U of posi t ive measu re  such that  for  

each t in U there  is a compac t  set C(t) such that  

(17.15) De.O) 7 1 C ( t ) / Q  for arbitrarily large n. 

W.l.o.g. we can choose  U so that  (17.14) holds for  all t in U (not only a.e.) 

wheneve r  p is one of the pn. Fix a t in U, and set u = u,, u p = uP,, ye = yP(t), 
D e = De( t ) ,  C = C( t ) ;  thus we have  
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(17.16) y~~ ue"(Y~") ->6 
( u . ~ 1 7 6  - 

for all n => 1. We next assert that there  are positive numbers /3  and 6'  such that 

u(x ) <= /3 (17.I7) 

for all x in C. and 

(17.1~,) 

for all i and all x 

. ' ( x ) _ -  > 8'  

in C at which u' (x)  exists. Asser t ion (17.17) follows 

immedia te ly  f rom (5.6), or a l ternat ively f rom the cont inui ty of u and the 

compac tness  of C. To  prove  (17.18), define ~' = m a x { x ' :  x C C } +  1 for each i, 

and let 

C ' = { z E f l : z ' = ~ ' , z ' < = s  ' for j J i } .  

Then  u '  is defined and cont inuous  on C', which is compac t ;  hence u' attains its 

min imum,  which we call 6', on C'.  But for each x in C and each i there  is a z in 

C' with x '  < z '  and x '  = z '*for  j ~  i. F rom the concavi ty  of u it then follows that  

u'(x)>= u ' ( z )  when u' (x)  exists (which is always the case when x '  > 0 ) .  Since 

u ' ( z ) ~  6', we may set 6 ' :  min, 6', and thus (17.18) is proved.  

Bv Corol lary  16.5, (uP) ' (yP)_-  > u'(x) /p '  for all i and all x in D ' .  Hence  f rom 

(17.15) and (17.18) we get 

(17.19) (uP)'(y ") >- 6'/p' 

for all i. F rom (17.15) and (17.17) we get uP(y p) _</3. Combin ing  this with (17.16) 

and (17.19), we get 

(17.20) yP :> 6 -p ' /3 /6 '  

for all i and all p in Int  ,5. 

Since p , ,~  ~,5, there is a coord ina te  of p,, that vanishes;  w.l.o.g, let p~,= 0. 

Then  pl,---~O, and so f rom (17.20) we deduce  

(17.21) yP. >- 6/2 

for  n sufficiently large. 

For  each n, let xn ~ D P- N C;  by (17.15), there is such an x,. The  sequence  {x,} 

has a limit point  x,,; w.l.o.g, let it be the limit. By (17.21), p,x, = yP.  ~ 6 / 2  for all 

sufficiently large n ; hence pox,, => 6/2. Hence  there  is an i with p~ > 0 and x,', > 0; 

w.l.o.g, let i = 2. Let  C ' =  {x E C: x2>= x~,/2}, and let / 3 '=  max {u2(x): x E C'}; 

this max is achieved,  because  u 2 is cont inuous  on the compac t  set C'. For  
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x , >  Xo/2, and hence x, E C'  and u2(x,) _-< 13'. From sufficiently large n, we have ~ 2 

Corollary 16.5 we get for these n that 

u2(x.) = p2.(uP-)'(yP-) _-> p]6'/p~ 

hence p2<= pt/3,/6," Since p~,---~0 it foilows that pZ,--* 0, and hence po 2= 0. This 

contradiction proves Lemma 17.13. 

LEMMn 17.22. There is a price vector p such that 0 ~ Z(p) .  

PROOV. We will use Lemma 17.1. To show that the hypotheses of Lemma 17.1 

hold, note first that from Lemma 17.6 and p ~ IntA it follows that BP(t) is 

continuous (in the set sense) in p for a.a. t .  Hence from a known theorem [5, p. 

19, comment 4], it follows that 

(17.23) DP(t) is uppersemicontinuous in p for a.a. t. 

Next, from the definition of D p it follows that px <= yP(t) for all x E Dr(t).  

Hence from Corollary 17.10 it follows that if C is a compact subset of Int 4, then 

there is a constant c such that for all i, 

O<= x' <= (c + ~ e'(t))/min{p': p E C, l <= i <= l} 
/=1 

whenever p E C and x ~ DP(t). Thus 

(17.24) D p is integrably bounded throughout C, 

i.e. there is an integrable function h such that I1 x [I N h (t) whenever x E D P (t) 

and p E C. Now it is known (see e.g. [8, p. 73, prop. 8]) that the integral of an 

integrably bounded uppersemicontinuous set-valued function is uppersemicon- 

tinuous. Thus (17.23) and (17.24) yield the uppersemicontinuity of D (p )  and 

hence of Z ( p )  throughout C. Since every point in Int ~ has a compact 

neighborhood in Int A, it follows that 

(17.25) Z is uppersemicontinuous in In t~ .  

The values of an uppersemicontinuous set-valued function are necessarily 

closed, so that Z is closed-valued. From (17.24) it follows that each Z ( p )  is also 

bounded;  hence 

(17.26) Z is compact- valued. 

Moreover  x E Z (p )  ~ x >-_ - f e, whence 
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(17.27) Z is bounded [rom below. 

To establish the non-emptiness of Z(p) ,  we will use a measurability argument. 

Let 's  use the phrase a.e. Borel-measurable for a function (point- or set-valued) 

that differs from one with Borel graph on a set of measure 0 only. Then since yP 

is an allocation it is a.e. Borel-measurable. A fairly standard argument then shows 

that D P is also a.e. Borel-measurable. Then from the selection theorem of von 

Neumann [16] it follows that D p has a measurable selection. Since by (17.24), D p 

is integrably bounded, this measurable selection is integrable, and its integral is a 

member  of D(p) .  Hence D(p) ,  and so also Z(p) ,  are non-empty, i.e. 

(17.28) Z is a correspondence. 

Next, from the monotonicity of u, it follows that px = y~(t) for all p and t and 

all x E Dr(t). Since f yP = f pe, it follows that px = p f e for all x E D (p ), whence 

(17.29) pz =0 for all z E Z ( p ) .  

It' remains only to establish the boundary condition (17.3). Let p. ~ po where 

p, E IntA and p o e  OA. Let x. E D(p . ) ;  it is sufficient to prove that Zl=,x" ~oo.  

Since D(p , )  = f D  p., there is a sequence {x.} such that x , ( t )  E DP.(t) for all t and 

f x ,  = x,. Then by Fatou's lemma and Lemma 7.13, 

l iminf~',  x,' = liminf x', > liminf x', = oo. 
1 = i  t = l  t ~ l  

This proves (17.3). Hence by Lemma 17.1, there is a p in Int k such that 0 is in 

the convex hull of Z(p) .  But the integral of any set-valued function is convex [8, 

p. 62, theor. 3]. Hence D(p)  is convex, and hence so is Z(p) .  Hence Z ( p )  is its 

own convex hull, and so 0 E Z(p) .  This completes the proof of Lemma 17.22. 

Let p be such that 0 ~ Z(p) .  Then there is an x such that x( t )  E D~(t) for all t, 

and f x  = re. But this means precisely that x is an allocation satisfying (7.2) and 

(7.3). Thus (x ,p)  is a competitive tax equilibrium, hence x is an income tax 

allocation, and so by Theorem B a commodity tax allocation. This completes the 

proof of Theorem A in the non-atomic case. 

18. Existence for finite T: Completion of the proof of Theorem A 

Suppose the agent space T is finite. Then there is no equivalence theorem, and 

the existence of commodity tax allocations and income tax allocations must be 

established separately. But though the two proofs are different, they use similar 

ideas and many of the same tools. We proceed first to develop these tools. 
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Let E r be the set of all real valued functions on T; since T is finite, E r is a 

Euclidean space of dimension I T I. Define a generalized comparison function to 

be a non-negative (rather than positive) valued function on T, that does not 

vanish identically; the set of all such functions is denoted A. One can think of A 

as the non-negative orthant  of E r, excluding the origin. Notat ions for general- 

ized comparison functions are similar to those for comparison functions. Thus if 

A E A and M is a market  with agent space T, then the coalitional games r~ and qA 

are given by (14.7) and (14.8). 

At the basis of both proofs lies the following lemma, proved by L. S. Shapley 

[14, p. 261], and used by him to establish the existence of N T U  values in a 

general context. 

PROeOSmON 18.1. Let C be a convex and compact subset of E r. Let A --+ ~,A be 

a continuous mapping 29 from A to E T such that for all A, 

(18.2) ,~r~ g ' A ( t ) = m a x { , ~ r A ( t ) z ( t ) : z E C } '  

and for all t and A, 

(18.3) A(t) = 0 :ff t0A(t)=> 0. 

Then there is a A in A such that 

(18.4) tkx E C. 

Let M be a fixed market  with the finite agent space T. In both of our 

applications of Proposition 18.1, we will choose ~~ 

(18.5) C = {z ~ E r:  there is an allocation x with u (x)/[ T I = z} 

(recall that u(x )  is the function on T whose value at t is u,(x(t))). The convexity 

of C follows from the concavity of the u,, and the compactness of C from the fact 

that the set of all allocations is compact  and the u, are continuous, so that C is 

the continuous image of a compact  set. 

To prove the existence of a commodity  tax allocation, set ~A(t)= (4n/,)({t}), 

where & is the value. To apply Proposition 18.1, we shall have to establish the 

continuity of A--+ t#,, (18.2), and (18.3). 

By (14.7), for all S C T we have 

2, The proposition remains true if the mapping is defined on the unit simplex only. 
~o We divide u(x) by I TI because we wish to think of the payoff to an individual agent t as 

u,(x(t))tz({t}), just as in the non-atomic case we think of the payoff to dt as u,(x(t))t~(dt). 
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r,(S)=sup{f~ Au(x):I~ x=e(S)} .  

Note that because of the finiteness of T, the integrals appearing on the right are 

in fact sums. The sup is over all S-allocations x;  this is a compact subset of 

Euclidean space of dimension II S I, and so the sup is attained and is a continuous 

function of A in A. Hence by (14.8), q,(S) is also a continuous function of A. 

Hence by Proposition 2.5, O , ( t )=  (4)q,)({t}) is indeed continuous in A. 

The right side of (18.2) is simply rA(T); thus (18.2) merely is the efficiency 

axiom (2.3) for the value, since q,(T)= r~(T). 
Next, the game q, is monotonic, i.e. S D U ~ q~(S) >- qa(U). Together with 

Proposition 2.5, this shows that tp, (t) = (&qA)({t})_- > 0 for all A and t, and this in 

particular implies (18.3). 

From Proposition 18.1 we then deduce (18.4). Taking into account the 

definition (18.5) of C, we find that (18.4) says that there is a generalized 

comparison function A and an allocation x such that 

(18.6) (4n/~)({t}) = A(t)u,(x(t))/I TI 

for all t in T. 

We show next that the A obeying (18.6) is in fact a comparison function, i.e. 

A ( t ) > 0  for all t. Recall that given an ordering of the agents and an agent t, 5:, 
represents the set of agents preceding t in the ordering. Assume first tha~t 

I TI >2 .  Let t~ be an agent with e(t,)~ 0; there must be such an agent since 

fe > 0 (Assumption (5.4)). Since A does not vanish identically, either A ( t , )>  0, 

or there is an agent t,, different from tl with A(t,,) > 0. In the latter case, consider 

an order on the agents in which t,, is first, and t, is the first t such tha~L 

#(S, U{t})= > 1/2; i.e.. t, is number ITI/2 in the order if ITI is even, number 

( /T I +  1)/2 if ITI is odd. Then q,(S,,) = 0 and 

q~(S,, U {t~})= r,(St, U {tz})_ -> A(t,,)u~,(e(t,))/I TI >0 .  

Hence q, (S,, U {t,}) - qA (S,,) > 0 for this order, and so ( ~ / , )  ({ta}) > 0. Hence by 

(18.6), A(t~)>0 in this case as well. 

Suppose now t: is any agent other than t,. Consider the order in which t, is first 

and t2 is the first t such that ix(S, U{t})_- > 1/2. Then q,(S,~) 0 and 

q, (S,. U {t:}) = r, (S,2 U {t2}) -> A (tOu,,(e (t~))/I T I > O. 

Hence qA (S,~ U {t:}) - q, (S,:) > 0 for this order, and so (Oq,) ({t:}) > 0. Hence by 

(18.6), A(t2)>0.  Since t2 was chosen to be any agent, we have proved 
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(18.7) A ( t ) > 0  

when A satisfies (18.6) and IT I  > 2 .  

The  case I TI = 2 requires  special t r ea tmen t  since the first t in the o rder  is also 

the first t such that /x(S, • {t})_->_ 1/2. Let T = {t~, t_,}; w.l.o.g. A l to )>  O. Since M 

is non-tr ivial  (see Section 8), we must  have e(t:)  / I). H e n c e  q~,({t,, t_,}) - q, ({t,}) > 

0, hence  (0q,)({re}) > 0 and so by (18.6), ,~ (te) > o. When  I TJ < 2, (18.7) is trivial. 

Thus  we have shown (18.7) wheneve r  A satisfies (18.6); in o ther  words,  there  is a 

compar i son  funct ion (not only a genera l ized  compar i son  funct ion)  obeying  

(18.6). 
We have a l ready noted  that  the sup in the definit ion of r , ( S )  is a t ta ined  for all 

A in A and all S C 7", and so in par t icular  for  S = T and for the A obeying  (18.6). 

Since this A is a compar i son  function,  it follows f rom Proposi t ion 11.I 1 that v, is 

defined, and hence f rom Corol la ry  11.9 that  ,~q,, = Or,.  Thus  f rom (18.6) we get 

(0v~)({t}) = A ( t ) u , ( x ( t ) ) / I  T !  for all t in 7". Because  of the finiteness of T this 

implies  (11.13), and so f rom Proposi t ion  11.12 it follows that x is a c o m m o d i t y  

tax al location.  

We  turn next to the proof  of existence of an income tax allocation.  This  is in 

many  respects  similar to the proof  just comple ted ,  and we will on several  

occasions refer  the r eader  to an a rgumen t  in " the  previous  case ,"  ra ther  than 

going through it in detail  again. 

Given  a A in A, let x be an al location at which r A ( T )  is a t ta ined,  i.e. such that 

f A u ( x )  = r a ( T ) .  Such an al location is efficient, and so there  is associa ted  with it a 

unique normal ized  efficiency price vec tor  p. We now show that though there  may 

be more  than one x associated with A, all these different x ' s  associated with the 

same h. will have the same normal ized  efficiency price vec tor  p, which we may 

call p(A) .  

Indeed ,  suppose  r , , (T )  is a t ta ined at two different al locations,  x, and x:. Let  

(A,p~) and (A, p2) be efficiencv pairs for x, and x2 respectively.  For  a given i, let t 

be such that  x i ( t )  > 0 .  Apply ing  (9.1) first with x = x, and p - p~, and then with 

x = x2 and p = p2, we find 

p ~ ( x , ( t )  - x2(t)) _-< A( t ) (u ,  ( x , ( t ) )  - u, ( x2( t ) ) )  <= p2(x~(t )  - x2 ( t ) ) .  

In tegra t ing  (i.e. summing)  over  t yields 0 both  on the ex t reme  right and on the 

ex t r eme  left, since fx~  = f x 2  = re .  H e n c e  we must  have  equal i ty th roughou t  for  

each t, and so in par t icular  

A ( t ) u , ( x z ( t ) )  - p2x~( t )  = A ( t ) u , ( x z ( t ) )  - p2x: ( t ) .  
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Thus  the m a x i m u m  of A(t)u,(x)-p2x is t aken  on at x,(t) as well as at x2(t). 
F r o m  this it follows that  A(t)u',(x~(t))=p ". But by (9.5), a(t)u',(xl(t))=pl; 
hence  p i  = p~. Since this holds for each i we conclude 31 that  pt = p2. F r o m  this it 

follows that  the normalized efficiency price vectors  associa ted with Xl and x2 are 

also the  same,  so that  p (A)  is indeed well defined.  No te  that  p (A)  > 0 even when 

A has some vanishing componen t s .  

Now i f p  is any price vector ,  let rAP and q ]  be the coali t ional  games  def ined by 

(18.8) 

f > 1  

rP(S) if # ( S )  = ~ 

q (S) = 

1 
o if 

W e  may  think of r~ and q]  as being associated with AM p in the same  way that  r 

and q are associa ted with M ;  but  it should be  r e m e m b e r e d  that  AM p is not really 

a marke t ,  since A (t) may vanish for  some  t, and those t will not have increasing 

utilities in AM p. Set ~b, (t) = &q~t*~({t}). To  apply Proposi t ion  18.1, we must ,  as in 

the previous  case, p rove  the cont inui ty of A --~ t0,, (18.2), and (18.3). 

First we show that  p (A)  is con t inuous  in A. Let  Ak ~ A0. Let  r,~(T) be a t ta ined 

at x~, and let xo be a limit point  of xk, which w.l.o.g, we may take  to be  the limit; 

then r~,(T) is a t ta ined at xo. For  each i, there  is a t such that  x ~ ( t ) > 0 ;  this 

follows f rom fxo = fe > 0. H e n c e  for sufficiently large k, which w.l.o.g, we may 

take  to be  all k, we have x ~ ( t ) > 0 .  Def ine  

(18.9) p~ = Ak (tJu ;(x~ (t)) 

for  such t; no te  that  Ak(t) cannot  vanish,  since x~(t) = 0 if it does.  Then  by (9.5), 

pk is an efficiency price vec tor  for  xk for  k = 0, 1 , 2 , . . . ,  i.e. 

(18.10) P(A~) = P ~ / E  P~, 

where  Epk = El-,pt. F r o m  (18.9), xk ~ Xo, Ak ~ Ao, and the cont inui ty  of the 

der iva t ive  u ;, we deduce  pk --~ po. H e n c e  by (18.10), p(Ak )--* p(A0), which proves  

that  p (A)  is con t inuous  in A. 

3, For a similar argument, see [4, p. 190]. 
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From (18.8), it follows that r~ (S) is simultaneously continuous as a function of 

A and p (recall that p > 0 always). Hence r]~"~(S) is continuous in ,i, hence so is 

q~*~(S), and hence so is ~0,(t)= Oq]~A~({t}). To prove (18.2), note that on the 

right side we have r~(T), which is the same as r",C*~(T) because p(A) is an 

efficiency price vector for the x at which ra(T) is attained. On the left side we 

have Y,~T(4~q]t~)({t})= (Oq]t~)(T),  which because of the efficiency condition 

(2.3) for values, = q]~(T)  = r]~J'~(T). Thus (18.2) is proved. (18.3) follows by a 

monotonicity argument exactly as in the previous case. 

From Proposition 18.1 we then deduce (18.4). Taking into account the 

definition (18.5) of C, we find that (18.4) says that there is a generalized 

comparison function A and an allocation x such that 

(18.11) (4 ,q~)({ t})  = A(t)u,(x(t))/I T I 

for all t in T. 

We next claim that the A obeying (18.11) is in fact a comparison function, i.e. 

A(t) > 0 for all t. This proof is exactly the same as in the previous case. We must 

only replace u, by u, ~*~ and e by p(A)e;  since p ' (A)  never vanishes, we have 

p(A)e = 0 if and only if e = 0, and so the proof goes through as before. 

Finally, arguing as in the previous case - -  but in M p~) rather than M - -  we 

find that the existence of a comparison function A and an allocation x satisfying 

(18.11) implies that the Harsanyi coalitional form v~ ~ of the redistribution game 

F(M ~*~) is defined, and that (cbvPt~'~)(S)= fsAu(x)  for all S. Since p(A) is an 

efficiency price vector for x, we have u(x)= u"<A~(p()t)x). Hence (4)v]~ 
j s A u ~ ( p ( A ) x )  for all S, and so by Proposition 11.I2, p(A)x is a tax allocation 

in M p~. Since p(A) is an efficiency price vector for x, it follows that (x,p(A)) is a 

competitive tax equilibrium, and hence x is an income tax allocation. This 

completes the proof of Theorem A. 

19. Non-equivalence for finite T 

When there are finitely many agents and at least 2 commodities, the 

commodity tax allocations are in general not the same as the income tax 

allocations. We present an example, from which it will be clear that for finite T, 

equivalence is the exception rather than the rule. 

Define M by T={1,2} ,  e (1) = (8, 0), e (2 )=(0 ,27) ,  and ul(x)=u2(x) = 
[(( 3 ~  + 2/~--~)3), where f is an increasing C 1 concave bounded function that is 

ditterentiable and is the identity on the "re levant"  part of the line (.f(s) = s for 

s =< 125 is sufficient). We need f only to satisfy the boundedness condition on the 

/-gto 
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The example is relatively transparent because of the homothetic preferences. 

Any Pareto optimal allocation - -  including any commodity tax allocation and 

any income tax allocation - -  consists exclusively of bundles lying on the 

"diagonal," i.e. the straight line segment connecting the origin to the aggregate 

endowment (8,27) of the economy (see Fig. 2). Therefore the efficiency price 

vector associated with any Pareto optimal allocation must be orthogonal to the 

indifference curve at (8, 27), which means that it is proportional to (9, 4). 

p ~ (9 ,4 )  

l l )  

)=27 

Fig. 2. 

Let us first calculate the commodity tax allocations. From I TI = 2 it follows 

that q~ = r,, and hence by Proposition 11.1i and Corollary 11.9 that &v~, = ~br~. 

Thus we must find an allocation x and a comparison function A for which 

A(t)u,(x(t))=(~br,)({t}) for t =  1,2. By a remark of Shapley [14], this is 

equivalent to solving a Bargaining Problem in the sense of Nash [11]; namely, 

the problem in which the disagreement payoffs are r({1})= ul(e(1))= 8 and 

r({2}) = uz(e(2)) = 27, and the set of feasible contracts is the set of all utility pairs 

(Ul(X(1)), u:(x(2))), where x ranges over all allocations. We have already seen 

that all Pareto optimal allocations consist of bundles on the diagonal; further- 
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more,  the utility functions are equal to each other and are homogeneous  of 

degree 1, hence linear on the diagonal. Hence the Pareto optimal surface of the 

feasible set is the line u, + u2 = 125. In this case the Nash solution is to "split the 

surplus," the surplus being 125 - (8 + 27) = 90. Hence  agents i and 2 end up with 

utilities of 8 + 4 5 - - 5 3  and 2 7 + 4 5  = 72 respectively. There  is exactly one 

commodity  tax allocation, and it is given by x ( 1 ) =  (8 . 53/125, 27 . 53/125) ~ 

(3.4, 11.4) and x ( 2 ) =  (8.72/125,27.72/125)-~ (4.6, 15.6) (see Fig. 2). 

We turn next to the competi t ive tax equilibria (x, p). Here  the price vector p is 

an efficiency price vector for the income tax allocation x (see (7.2)); therefore by 

the homotheticity,  we may take p = (9, 4), as we saw above. In the market  M", 

each trader t can guarantee to himseIf u~(pe(t)). The maximum of u, on the line 

px = pe(t) is taken on when that line crosses the "diagonal"  (see Fig. 2), which is 

at (16/5,54/5) for t = 1 and at (24/5,81/5) for t = 2. Hence u~(pe(1))= 50 and 

u~(pe(2)) = 75. Reasoning as before but in the market  M p, we obtain a Nash 

Problem with disagreement payoffs of 50 and 75 and a Pareto optimal line given 

by ul + u2 = 125. Here,  therefore,  there is no surplus, so the agents end up with 

utilities of 50 and 75 respectively. There  is exactly one income tax allocation, 

given by x(1) = (16/5, 54/5) = (3.2, 10.8) and x(2) = (24/5, 81/5) = (4.8, 16.2). 

The reason for the discrepancy between the commodi ty  tax allocation and the 

income tax allocation is, of course, that though the feasible payoffs in M and M p 

are the same, the disagreement payoffs are quite different and in fact larger in 

M e than in M. 
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